Пластичность волатильности:Приложение:Меры волатильности
Приложение: Броуновское блуждание << | Оглавление | >> Приложение: Моделирование блуждания |
---|
Для положительной случайной величины ширину её распределения можно характеризовать относительной ошибкой , где , как обычно, обозначает среднеквадратичное отклонение .
Заметим, что относительные ширины распределений для и различны, поэтому, вообще говоря, существуют различные критерии оптимальности мер измерения волатильности. Например, для вычисления стационарной волатильности обычно используется, усреднение либо квадратов доходностей, либо квадратов амплитуд размаха [1]:
(34)
|
Так как в этой статье мы изучаем нестационарный характер волатильности, и для её сглаживания используем нелинейный HP-фильтр, то удобнее усреднять непосредственно волатильности , а не их квадраты, которые, как мы увидим ниже, при малых дают, к тому же, смещённое значение . Тем не менее, говоря о различных мерах волатильности, мы будем вычислять относительную ширину как самой величины, так и её квадрата.
Приведём некоторые известные меры. Базовой будет мера Parkinson (1980) [1], равная амплитуде размаха . Garman and Klass (1980) [2], в классе аналитических функций по , , , предложили следующую оптимальную комбинацию, которая лучше меры Parkinson:
(35)
|
Отметим также более простую и не зависящую от сноса меру Rogers and Satchell (1991) [3]:
(36)
|
Покажем, что простейшая линейная модификация меры Parkinson
(37)
|
с некоторой константой приводит к более узкому распределению, чем амплитуда размаха. Если в качестве критерия узости использовать относительную волатильность , то при помощи средних из приложения A несложно найти оптимальное значение коэффициента :
(38)
|
Однако, так как критерий не является единственным, и в силу слабой чувствительности относительной волатильности от , мы в статье использовали значение и обозначение . Далее .
Заметим, что существует ещё одна простая мера волатильности, сравнимая по эффективности с (37), следующего вида:
(39)
|
Хотя вероятность нулевого значения для конечной длительности лага исчезающе мала, необходимо, тем не менее, доопределить при . Вообще, (37) и (39) не являются аналитическими функциями по и и выпадают из действия леммы приложения B. работы [2].
Кроме ширины распределения, в качестве критерия иногда используется отсутствие или слабая зависимость от сноса . Заметим, что для дневных или более коротких лагов . Поэтому этот критерий не является столь значимым. Предложенная выше мера модифицированной амплитуды размаха, как и сама амплитуда, зависит от . Однако эта зависимость существенно слабее, чем у амплитуды. Если воспользоваться разложениями (32), (33), для можно записать:
Видно, что коэффициент при в случае в четыре раза меньше, чем в случае (). Соответственно, в четыре раза меньше и зависимость от . При (далее ) коэффициент при становится равным нулю и зависимость от ослабевает ещё сильнее, хотя полностью она исчезает только для меры Rogers and Satchell.
Сравним теперь статистические параметры различных мер волатильности:

Курсивным шрифтом приведены значения Монте-Карло моделирования по 3.5 миллионам лагов, каждый из которых являлся блужданием из миллиона тиков. В этом случае для средних и волатильности в последнем знаке возможна ошибка порядка . Для определения остальных значений (не курсивных) использовались аналитические выражения.
В условиях нестационарности данных часто необходимо проводить усреднение по достаточно малому числу наблюдений . В этом случае начинает проявляться смещённость квадратичных мер для оценки волатильности . Даже, если мы вычисляем классический квадрат волатильности по несмещённой формуле (34), значение будет смещено, так как при усреднении по большому числу выборок, каждая из которых имеет размер , мы имеем: , но . Если нас интересует значение именно волатильности, а не её квадрата, лучше для нестационарных данных использовать линейные, а не квадратичные меры.
Для иллюстрации эффекта смещения справа приведены графики средних значений волатильности, полученных усреднением по большому числу выборок по значений в каждой для стандартного определения и меры (35) по сравнению с линейной мерой .

Таким образом, мера имеет достаточно узкое распределение, и, следовательно, ошибку измерения волатильности. При этом её очевидным преимуществом является простота, по сравнению с мерами и . Кроме этого она не смещена при малых размерах выборки, что существенно при исследовании эффектов нестационарности.
Примчания
- ↑ Перейти к: 1,0 1,1 M. Parkinson, 1980 The extreme value method for estimating the variance of the rate of return, The Journal of Business}, Vol.53, No.1.
- ↑ Перейти к: 2,0 2,1 M.B. Garman, M.J.Klass, 1980, On the estimation of security price volatilities from historical data, The Journal of Business, Vol.53, No.1.
- Перейти ↑ L.C.G. Rogers, S.E.Satchell, 1991, {Estimating variance from high, low and closing prices}, The Annals of Applied Probability, Vol.1. No.4, pp.504-512.
Приложение: Броуновское блуждание << | Оглавление | >> Приложение: Моделирование блуждания |
---|