Простые стохастические модели — различия между версиями
WikiSysop (обсуждение | вклад) (Новая страница: «{| width="100%" | width="40%"|Точные решения уравнения Ито << ! width="20%"|[[Стохастический мир|Оглавлен…») |
WikiSysop (обсуждение | вклад) |
||
Строка 6: | Строка 6: | ||
---- | ---- | ||
+ | <math>\textstyle \bullet</math> ''Логарифмическое блуждание'' определяется уравнением: | ||
+ | |||
+ | :<center><math> { \;\;dx = \mu \,x\,dt + \sigma\,x\,\delta W\; }, </math></center> | ||
+ | |||
+ | где <math>\textstyle \mu</math> и <math>\textstyle \sigma</math> — константы модели. Часто () называют геометрическим или экспоненциальным броуновским блужданием. | ||
+ | |||
+ | Если стохастического члена нет (<math>\textstyle \sigma=0</math>), то это обычное уравнение экспоненциального роста (<math>\textstyle \mu>0</math>) или снижения (<math>\textstyle \mu<0</math>): | ||
+ | |||
+ | :<center><math>\frac{dx}{dt} = \mu\,x\;\;\;\;\;\;\;\;\;\;\;\;=>\;\;\;\;\;\;\;\;\;\;\;\;\;\;x(t)=x_0\,e^{\mu t}.</math></center> | ||
+ | |||
+ | Подобная зависимость возникает во многих физических, биологических и социальных системах, от радиоактивного распада до роста экономики. | ||
+ | |||
+ | Случайное воздействие вносит в гладкую динамику определённые коррективы. Подставим функции сноса <math>\textstyle a(x,t)=\mu\,x</math> и волатильности <math>\textstyle b(x,t)=\sigma\,x</math> в условие совместности () на стр. \pageref{ito_main_def}. В результате для <math>\textstyle s(t)</math> получается тривиальное уравнение <math>\textstyle \dot{s}(t)=0</math>, где точка сверху обозначает производную по времени. Следовательно, <math>\textstyle s(t)</math> — это константа, которую удобно выбрать равной <math>\textstyle \sigma</math>. Интегрирование первого уравнения () даёт <math>\textstyle F(x,t)=\ln x</math>, и, соответственно, функция <math>\textstyle f(t)</math> равна <math>\textstyle \mu-\sigma^2/2</math>. Окончательное решение (<math>\textstyle t_0=0</math>) имеет вид: | ||
+ | |||
+ | :<center><math> x(t)= x_0\, e^{\left(\mu -\sigma^2/2 \right)\, t + \sigma\sqrt{t}\, \varepsilon}. </math></center> | ||
+ | |||
+ | Если в процессе Винера <math>\textstyle x</math> может "уползти" при блуждании в область отрицательных значений <math>\textstyle x<0</math>, то для логарифмической модели это невозможно. Подобное свойство можно было ожидать сразу по виду (). По мере приближения к значению <math>\textstyle x=0</math> снос и волатильность уменьшаются. В результате динамика как бы замораживается при <math>\textstyle x\to 0</math>. | ||
+ | |||
+ | Используя интеграл () на стр. \pageref{aver_exp_gauss}, легко вычислить среднее значение и волатильность в произвольный момент времени: | ||
+ | |||
+ | :<center><math>\bar{x}(t)=x_0\,e^{\mu t},\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\sigma_x(t)=\bar{x}(t) \cdot \sqrt{e^{\sigma^2 t}-1} .</math></center> | ||
+ | |||
+ | Заметим, что необходимо решительно бороться с искушением "по обычному" обращаться со стохастическими уравнениями. Например, разделив () на <math>\textstyle x</math>, нельзя внести его под дифференциал: <math>\textstyle dx/x \neq d\ln x</math>. Для подобных действий служит лемма Ито () по которой для процесса логарифмического блуждания <math>\textstyle d(\ln x)=(\mu-\sigma^2/2)\,dt + \sigma \, \delta W</math>. Фактически, при помощи этой замены, найденной по алгоритму стр. \pageref{ito_main_def}, мы и получили решение (). | ||
+ | |||
+ | Ниже на левом рисунке приведены логарифмические блуждания с нулевым сносом: <math>\textstyle dx = x\delta W</math>. Видно, как они, прижимаясь к <math>\textstyle x=0</math>, тем не менее, остаются в положительной области. В результате получается несимметричное распределение для <math>\textstyle x</math>, которое в данном случае имеет логнормальный вид. Справа динамика дополнена детерминированным сносом: <math>\textstyle dx = 0.05\cdot x\cdot (dt + \delta W)</math>. Она имеет ярко выраженный экспоненциальный рост со стохастическими колебаниями вокруг экспоненты. | ||
+ | |||
+ | [[File:log_winer.png]] | ||
+ | |||
+ | \\ Эти два примера напоминают нам, что стохастические процессы могут быть как малыми поправками к детерминированной динамике (справа), так и основной сутью исследуемой системы (слева). | ||
+ | |||
+ | Введя винеровский процесс <math>\textstyle W_t=W(t)=\varepsilon\sqrt{t}</math>, решение для логарифмического блуждания можно записать в следующем виде: | ||
+ | |||
+ | :<center><math>x(t) = e^{(\mu-\sigma^2/2)t + \sigma\,W_t}.</math></center> | ||
+ | |||
+ | Действительно, производные для <math>\textstyle x(t)=F(t, W)</math> равны: | ||
+ | |||
+ | :<center><math>\frac{\partial x}{\partial t} = (\mu-\sigma^2/2) \, x,\;\;\;\;\;\;\;\;\frac{\partial x}{\partial W} = \sigma\, x,\;\;\;\;\;\;\;\;\frac{\partial^2 x}{\partial W^2} = \sigma^2\, x.</math></center> | ||
+ | |||
+ | Винеровское блуждание <math>\textstyle W_t</math> имеет нулевой снос <math>\textstyle a=0</math> и единичную волатильность <math>\textstyle b=1</math>. Поэтому по лемме Ито () имеем: | ||
+ | |||
+ | :<center><math>dx = \left( \frac{\partial x}{\partial t} + \frac{1}{2}\,\frac{\partial^2 x}{\partial W^2} \right)\, dt + \frac{\partial x}{\partial W}\,\delta W = \mu \,x\,dt + \sigma\,x\,\delta W.</math></center> | ||
+ | |||
+ | Роль <math>\textstyle x</math> теперь играет процесс <math>\textstyle W</math>, а функция <math>\textstyle F</math> — это <math>\textstyle x</math>. | ||
+ | |||
+ | Задавая различные функции <math>\textstyle x=F(t, W_t)</math>, удовлетворяющие начальному условию <math>\textstyle x_0=F(0, 0)</math>, можно найти целый класс точно решаемых стохастических уравнений. После подстановки <math>\textstyle F(t, W_t)</math> в лемму Ито необходимо исключить <math>\textstyle W_t</math>, заменив её на <math>\textstyle W_t=G(t, x)</math>, где <math>\textstyle G</math> — обратная к <math>\textstyle F</math> функция. Кроме этого константа <math>\textstyle x_0</math> должна сократиться, так как это "внешнее" к динамике условие и "порядочное уравнение" не должно зависеть от него. В качестве упражнения стоит проверить решения (<math>\textstyle \mathbf{R}_{}</math>) — (<math>\textstyle \mathbf{R}_{}</math>) из Справочника (стр. \pageref{r_exact_from_W_1}). К сожалению, чаще таким методом получаются уравнения, в которых снос зависит от волатильности шума, что не очень естественно для практических приложений. | ||
+ | |||
+ | <math>\textstyle \bullet</math> ''Процесс Орнштейна - Уленбека'': | ||
+ | |||
+ | :<center><math> { \;dx = -\beta\cdot (x-\alpha)\,dt + \sigma\,\delta W } </math></center> | ||
+ | |||
+ | описывает блуждание, в котором <math>\textstyle x</math> притягивается к уровню, определяемому константой <math>\textstyle \alpha</math>. При этом волатильность <math>\textstyle \sigma</math> считается постоянной. Если <math>\textstyle x\gg\alpha</math>, то снос становится заметно отрицательным и тянет процесс вниз. При опускании <math>\textstyle x</math> ниже <math>\textstyle \alpha</math> снос оказывается положительным и в среднем поднимает <math>\textstyle x(t)</math> вверх. Параметр <math>\textstyle \beta>0</math> характеризует величину "силы притяжения" к равновесному значению <math>\textstyle \alpha</math>. | ||
+ | |||
+ | Условие совместности () даёт уравнение <math>\textstyle \dot{s}(t)=\beta s(t)</math>. Решая его и первое уравнение () для <math>\textstyle F(x,t)</math>, мы каждый раз выбираем константы интегрирования наиболее "удобным способом", так как начальные условия уже учтены в (), а нам необходимо найти ''простейшую'' замену, исключающую <math>\textstyle x</math> из сноса и волатильности: | ||
+ | |||
+ | :<center><math>s(t)=\sigma e^{\beta t},\;\;\;\;\;\;\;\;\;F(x,t)=x e^{\beta t},\;\;\;\;\;\;\;\;\;\;f(t)=\alpha\beta e^{\beta t}.</math></center> | ||
+ | |||
+ | В результате решение записывается в следующем виде (<math>\textstyle t_0=0</math>): | ||
+ | |||
+ | :<center><math> x(t) = \alpha + \bigl(x_0-\alpha\bigr) e^{-\beta t} + \frac{\sigma}{\sqrt{2\beta}}\, \sqrt{1-e^{-2\beta t}}\cdot \; \varepsilon. </math></center> | ||
+ | |||
+ | Несложно увидеть, что <math>\textstyle x(t)</math> оказывается гауссово распределённой величиной со средним и дисперсией, зависящими от времени. | ||
+ | |||
+ | Если <math>\textstyle \beta>0</math>, то среднее при больших временах стремится к равновесному уровню <math>\textstyle \alpha</math>. Волатильность становится равной <math>\textstyle \sigma/\sqrt{2\beta}</math>. При винеровском или логарифмическом блуждании <math>\textstyle x(t)</math> может уйти как угодно далеко от своего начального значения <math>\textstyle x_0</math>. Для процесса () <math>\textstyle x(t)</math> "заперта" в статистическом коридоре с шириной, равной двойной волатильности <math>\textstyle \sigma/\sqrt{2\beta}</math>. | ||
+ | |||
+ | При малых <math>\textstyle \beta</math> процесс Орнштейна-Уленбека по своему поведению становится очень близким к обычному винеровскому блужданию. Траектория <math>\textstyle x(t)</math> достаточно долго блуждает выше или ниже <math>\textstyle \alpha</math>, не уходя, тем не менее, на бесконечность. Волатильность стремится к <math>\textstyle \sigma/\sqrt{2\beta}</math>, и тем больше, чем меньше <math>\textstyle \beta</math>. Следовательно, характерный коридор, в котором происходит блуждание, при малых <math>\textstyle \beta</math> расширяется. Если и <math>\textstyle \sigma</math>, и <math>\textstyle \beta</math> достаточно большие, <math>\textstyle x(t)</math> часто пересекает равновесный уровень, начиная напоминать обычный белый шум. | ||
+ | |||
+ | Наличие равновесного уровня в модели Орнштейна-Уленбека полезно для различных финансовых приложений. Например, в случае курсов валют <math>\textstyle \alpha</math> может быть паритетом покупательной способности (<math>\textstyle \lessdot</math> C), а для процентной ставки - её долгосрочным значением. | ||
+ | |||
+ | Примеры реализаций блуждания Орнштейна-Уленбека при различных параметрах приведены ниже. На левом рисунке <math>\textstyle \beta=0.1</math>, <math>\textstyle \sigma=0.1</math>. На правом — <math>\textstyle \beta=1</math>, <math>\textstyle \sigma=0.5</math>. Величина <math>\textstyle \alpha</math> в обоих случаях равна единице. | ||
+ | |||
+ | [[File:ol.png]] | ||
+ | |||
+ | \\ | ||
+ | |||
+ | Необходимо помнить, что, если решение выражено через винеровскую переменную <math>\textstyle W_t</math>, её всегда можно переписать через гауссову случайную величину, заменив <math>\textstyle W_t=\varepsilon\sqrt{t}</math>. Обратное, вообще говоря, не верно. Если в решении есть <math>\textstyle \varepsilon</math>, нельзя его выразить через <math>\textstyle W_t</math>, подставив <math>\textstyle \varepsilon\to W_t/\sqrt{t}</math>. В качестве упражнения имеет смысл проверить, что подобная замена в (<math>\textstyle </math>) приводит к случайной функции, не удовлетворяющей (). | ||
+ | |||
+ | Можно объединить положительность <math>\textstyle x</math> и его притяжение к равновесному уровню в следующей логарифмической модели с притяжением: | ||
+ | |||
+ | :<center><math> dx = -\beta \cdot x\cdot\left(\ln \frac{x}{\alpha} - 1\right)\, dt + \sigma \,x \,\delta W. </math></center> | ||
+ | |||
+ | Если <math>\textstyle x>\alpha</math>, то снос отрицательный, а при <math>\textstyle x<\alpha</math> — положительный. Множитель <math>\textstyle x</math> "замораживает" динамику при приближении к <math>\textstyle x=0</math>. Для этой модели несложно найти точное решение (<math>\textstyle \lessdot</math> H). | ||
+ | |||
+ | На самом деле логарифмическая модель с притяжением является простой деформацией процесса Орнштейна-Уленбека. Действительно, если <math>\textstyle x</math> удовлетворяет уравнению (), то несложно проверить, что <math>\textstyle y=e^x</math> будет удовлетворять (). Уравнение () так же соотносится с (), как логарифмическое блуждание с процессом Винера. | ||
+ | |||
+ | Ещё одну модель уместно назвать ''броуновской ловушкой'': | ||
+ | |||
+ | :<center><math> dx = -\beta \cdot (x-\alpha)\,dt \;+\; \sigma \cdot(x-\alpha) \, \delta W. </math></center> | ||
+ | |||
+ | Член со сносом обеспечивает притяжение к уровню <math>\textstyle x=\alpha</math>, в окрестности которого волатильность становится очень маленькой, а динамика — детерминированной. В результате процесс рано или поздно гарантированно притягивается к значению <math>\textstyle x=\alpha</math> (<math>\textstyle \lessdot</math> H). | ||
+ | |||
+ | <math>\textstyle \bullet</math> Можно рассмотреть общее ''стационарное уравнение'', снос и волатильность которого не зависят от времени: | ||
+ | |||
+ | :<center><math>dx = a(x)\,dt + b(x)\,\delta W.</math></center> | ||
+ | |||
+ | Условие совместности записывается следующим образом: | ||
+ | |||
+ | :<center><math> \frac{\dot{s}(t)}{s(t)} = \frac{1}{2} \,b\cdot b'' - b \cdot \left(\frac{a}{b}\right)' = \gamma, </math></center> | ||
+ | |||
+ | где штрих производная по <math>\textstyle x</math>, точка — по времени, и опущены аргументы у функций. Левая часть зависит только от времени, правая — только от <math>\textstyle x</math>, поэтому это выражение равно некоторой константе, которую мы обозначили через <math>\textstyle \gamma</math>. Проинтегрировав это уравнение, найдём связь между сносом и волатильностью: | ||
+ | |||
+ | :<center><math>a= \frac{\bigl(b^2\bigr)'}{4} + \eta \cdot b - \gamma b\cdot \int \frac{dx}{b},</math></center> | ||
+ | |||
+ | где <math>\textstyle \eta</math> — ещё один параметр. | ||
+ | |||
+ | Если <math>\textstyle b(x)=\sigma=const</math> — мы приходим к уравнению Орнштейна-Уленбека (), стр. \pageref{equat_OU}. Для <math>\textstyle b(x)=\sigma x</math> точно решаемой задачей является логарифмическая модель с притяжением (), частным случаем которой является логарифмическое блуждание. При <math>\textstyle b(x)=\sigma \sqrt{x}</math> снос должен явным образом зависеть от <math>\textstyle \sigma</math>: | ||
+ | |||
+ | :<center><math>a(x) = \frac{\sigma^2}{4} + \alpha \sqrt{x} + 2\beta x.</math></center> | ||
+ | |||
+ | Решение такого уравнения имеет вид (<math>\textstyle x_0=x(0)</math>, <math>\textstyle \beta>0</math>): | ||
+ | |||
+ | :<center><math>x(t) =\left[ \sqrt{x_0}\,e^{\beta t} + \frac{\alpha}{2\beta}\, \left(e^{\beta t} - 1\right) + \frac{\sigma}{\sqrt{8\beta}} \,\sqrt{e^{2\beta t}-1}\cdot \varepsilon \right]^2.</math></center> | ||
+ | |||
+ | Если <math>\textstyle a(x)/b(x)=const</math>, или сноса при блуждании нет <math>\textstyle a(x)=0</math>, то условие совместности () упрощается: | ||
+ | |||
+ | :<center><math>\frac{b''}{2} = \frac{\gamma}{b}.</math></center> | ||
+ | |||
+ | Умножая его на интегрирующий множитель <math>\textstyle b'</math>, получаем решение в неявной форме: | ||
+ | |||
+ | :<center><math>x-\alpha = \int \frac{db}{\sqrt{\beta + 4 \gamma \ln b}},</math></center> | ||
+ | |||
+ | где <math>\textstyle \alpha</math> и <math>\textstyle \beta</math> — константы интегрирования. | ||
+ | |||
+ | <math>\textstyle \bullet</math> ''Броуновский мост''. Рассмотрим теперь уравнение Ито со сносом, зависящим не только от <math>\textstyle x</math>, но и от времени <math>\textstyle t</math>: | ||
+ | |||
+ | :<center><math> { \;dx = -\frac{x-\alpha}{T-t} \, dt + \sigma\,\delta W\; }. </math></center> | ||
+ | |||
+ | Константа <math>\textstyle T</math> — это выделенное время в будущем (<math>\textstyle t<T</math>), когда снос становится бесконечным. Условие совместности даёт: | ||
+ | |||
+ | :<center><math> s(t)=\frac{\sigma}{T-t},\;\;\;\;\;\;F(x,t)= \frac{x}{T-t},\;\;\;\;\;\;\;f(t)=\frac{\alpha}{(T-t)^2}. </math></center> | ||
+ | |||
+ | В результате получаем решение в следующем виде (<math>\textstyle x_0=x(t_0)</math>): | ||
+ | |||
+ | :<center><math>x(t) = \alpha + (x_0-\alpha)\, \frac {T-t}{T-t_0} + \sigma\, \sqrt{\frac{(t-t_0)(T-t)}{T-t_0}}\cdot \varepsilon.</math></center> | ||
+ | |||
+ | Среднее процесса при <math>\textstyle t\to T</math> стремится к <math>\textstyle \alpha</math>. При этом волатильность оказывается равной нулю. Это означает, что <math>\textstyle x(t)</math> ''гарантированно'' в процессе блуждания достигает равновесного значения <math>\textstyle x(T)=\alpha</math>: | ||
+ | |||
+ | [[File:bridge.png]] | ||
+ | |||
+ | \\ На рисунках в обоих случаях <math>\textstyle \alpha=1</math>. Слева <math>\textstyle \sigma=0.1</math>, справа <math>\textstyle \sigma=0.05</math>. Соединение начального условия <math>\textstyle x_0=x(0)</math> и "конечного" <math>\textstyle x(T)=\alpha</math> стохастическими траекториями и дало живописное название процессу. | ||
+ | |||
+ | Можно рассмотреть броуновский мост в более общем случае, с произвольными коэффициентами, зависящими от времени: | ||
+ | |||
+ | :<center><math>dx = -\beta(t)\cdot \Bigl(x-\alpha(t)\Bigr) \, dt + \sigma(t)\,\delta W.</math></center> | ||
+ | |||
+ | Условия совместности дают: | ||
+ | |||
+ | :<center><math>s(t)=\sigma(t)e^{\,\int\limits^t_{t_0} \beta(t)dt},\;\;\;F(x,t)=x\, \frac{s(t)}{\sigma(t)},\;\;\;f(t)=\alpha(t) \beta(t)\,\frac{s(t)}{\sigma(t)}.</math></center> | ||
+ | |||
+ | Для частного выбора <math>\textstyle \beta(t)=\beta/(T-t)</math>, <math>\textstyle \alpha(t)=\alpha</math>, <math>\textstyle \sigma(t)=\sigma</math>, где <math>\textstyle \alpha, \beta</math>, <math>\textstyle T</math> и <math>\textstyle \sigma</math> — константы модели, получаем решение в следующем виде (<math>\textstyle t_0=0</math>): | ||
+ | |||
+ | :<center><math>x(t) = \alpha +\frac{x_0-\alpha}{T^\beta} (T-t)^\beta + \sigma\cdot \left[\frac{(T-t)}{2\beta -1} \left(1- \frac{(T-t)^{2\beta-1}}{T^{2\beta-1}} \right) \right]^{1/2} \cdot\;\varepsilon.</math></center> | ||
+ | |||
+ | Заданием функции <math>\textstyle \alpha(t)</math> можно добиться произвольного выгиба "моста" вверх или вниз. | ||
---- | ---- | ||
{| width="100%" | {| width="100%" |
Версия 16:03, 27 января 2010
Точные решения уравнения Ито << | Оглавление | >> Представление стохастических решений |
---|
Логарифмическое блуждание определяется уравнением:
где и — константы модели. Часто () называют геометрическим или экспоненциальным броуновским блужданием.
Если стохастического члена нет (), то это обычное уравнение экспоненциального роста () или снижения ():
Подобная зависимость возникает во многих физических, биологических и социальных системах, от радиоактивного распада до роста экономики.
Случайное воздействие вносит в гладкую динамику определённые коррективы. Подставим функции сноса и волатильности в условие совместности () на стр. \pageref{ito_main_def}. В результате для получается тривиальное уравнение , где точка сверху обозначает производную по времени. Следовательно, — это константа, которую удобно выбрать равной . Интегрирование первого уравнения () даёт , и, соответственно, функция равна . Окончательное решение () имеет вид:
Если в процессе Винера может "уползти" при блуждании в область отрицательных значений , то для логарифмической модели это невозможно. Подобное свойство можно было ожидать сразу по виду (). По мере приближения к значению снос и волатильность уменьшаются. В результате динамика как бы замораживается при .
Используя интеграл () на стр. \pageref{aver_exp_gauss}, легко вычислить среднее значение и волатильность в произвольный момент времени:
Заметим, что необходимо решительно бороться с искушением "по обычному" обращаться со стохастическими уравнениями. Например, разделив () на , нельзя внести его под дифференциал: . Для подобных действий служит лемма Ито () по которой для процесса логарифмического блуждания . Фактически, при помощи этой замены, найденной по алгоритму стр. \pageref{ito_main_def}, мы и получили решение ().
Ниже на левом рисунке приведены логарифмические блуждания с нулевым сносом: . Видно, как они, прижимаясь к , тем не менее, остаются в положительной области. В результате получается несимметричное распределение для , которое в данном случае имеет логнормальный вид. Справа динамика дополнена детерминированным сносом: . Она имеет ярко выраженный экспоненциальный рост со стохастическими колебаниями вокруг экспоненты.
\\ Эти два примера напоминают нам, что стохастические процессы могут быть как малыми поправками к детерминированной динамике (справа), так и основной сутью исследуемой системы (слева).
Введя винеровский процесс , решение для логарифмического блуждания можно записать в следующем виде:
Действительно, производные для равны:
Винеровское блуждание имеет нулевой снос и единичную волатильность . Поэтому по лемме Ито () имеем:
Роль теперь играет процесс , а функция — это .
Задавая различные функции , удовлетворяющие начальному условию , можно найти целый класс точно решаемых стохастических уравнений. После подстановки в лемму Ито необходимо исключить , заменив её на , где — обратная к функция. Кроме этого константа должна сократиться, так как это "внешнее" к динамике условие и "порядочное уравнение" не должно зависеть от него. В качестве упражнения стоит проверить решения () — () из Справочника (стр. \pageref{r_exact_from_W_1}). К сожалению, чаще таким методом получаются уравнения, в которых снос зависит от волатильности шума, что не очень естественно для практических приложений.
Процесс Орнштейна - Уленбека:
описывает блуждание, в котором притягивается к уровню, определяемому константой . При этом волатильность считается постоянной. Если , то снос становится заметно отрицательным и тянет процесс вниз. При опускании ниже снос оказывается положительным и в среднем поднимает вверх. Параметр характеризует величину "силы притяжения" к равновесному значению .
Условие совместности () даёт уравнение . Решая его и первое уравнение () для , мы каждый раз выбираем константы интегрирования наиболее "удобным способом", так как начальные условия уже учтены в (), а нам необходимо найти простейшую замену, исключающую из сноса и волатильности:
В результате решение записывается в следующем виде ():
Несложно увидеть, что оказывается гауссово распределённой величиной со средним и дисперсией, зависящими от времени.
Если , то среднее при больших временах стремится к равновесному уровню . Волатильность становится равной . При винеровском или логарифмическом блуждании может уйти как угодно далеко от своего начального значения . Для процесса () "заперта" в статистическом коридоре с шириной, равной двойной волатильности .
При малых процесс Орнштейна-Уленбека по своему поведению становится очень близким к обычному винеровскому блужданию. Траектория достаточно долго блуждает выше или ниже , не уходя, тем не менее, на бесконечность. Волатильность стремится к , и тем больше, чем меньше . Следовательно, характерный коридор, в котором происходит блуждание, при малых расширяется. Если и , и достаточно большие, часто пересекает равновесный уровень, начиная напоминать обычный белый шум.
Наличие равновесного уровня в модели Орнштейна-Уленбека полезно для различных финансовых приложений. Например, в случае курсов валют может быть паритетом покупательной способности ( C), а для процентной ставки - её долгосрочным значением.
Примеры реализаций блуждания Орнштейна-Уленбека при различных параметрах приведены ниже. На левом рисунке , . На правом — , . Величина в обоих случаях равна единице.
\\
Необходимо помнить, что, если решение выражено через винеровскую переменную , её всегда можно переписать через гауссову случайную величину, заменив . Обратное, вообще говоря, не верно. Если в решении есть , нельзя его выразить через , подставив . В качестве упражнения имеет смысл проверить, что подобная замена в () приводит к случайной функции, не удовлетворяющей ().
Можно объединить положительность и его притяжение к равновесному уровню в следующей логарифмической модели с притяжением:
Если , то снос отрицательный, а при — положительный. Множитель "замораживает" динамику при приближении к . Для этой модели несложно найти точное решение ( H).
На самом деле логарифмическая модель с притяжением является простой деформацией процесса Орнштейна-Уленбека. Действительно, если удовлетворяет уравнению (), то несложно проверить, что будет удовлетворять (). Уравнение () так же соотносится с (), как логарифмическое блуждание с процессом Винера.
Ещё одну модель уместно назвать броуновской ловушкой:
Член со сносом обеспечивает притяжение к уровню , в окрестности которого волатильность становится очень маленькой, а динамика — детерминированной. В результате процесс рано или поздно гарантированно притягивается к значению ( H).
Можно рассмотреть общее стационарное уравнение, снос и волатильность которого не зависят от времени:
Условие совместности записывается следующим образом:
где штрих производная по , точка — по времени, и опущены аргументы у функций. Левая часть зависит только от времени, правая — только от , поэтому это выражение равно некоторой константе, которую мы обозначили через . Проинтегрировав это уравнение, найдём связь между сносом и волатильностью:
где — ещё один параметр.
Если — мы приходим к уравнению Орнштейна-Уленбека (), стр. \pageref{equat_OU}. Для точно решаемой задачей является логарифмическая модель с притяжением (), частным случаем которой является логарифмическое блуждание. При снос должен явным образом зависеть от :
Решение такого уравнения имеет вид (, ):
Если , или сноса при блуждании нет , то условие совместности () упрощается:
Умножая его на интегрирующий множитель , получаем решение в неявной форме:
где и — константы интегрирования.
Броуновский мост. Рассмотрим теперь уравнение Ито со сносом, зависящим не только от , но и от времени :
Константа — это выделенное время в будущем (), когда снос становится бесконечным. Условие совместности даёт:
В результате получаем решение в следующем виде ():
Среднее процесса при стремится к . При этом волатильность оказывается равной нулю. Это означает, что гарантированно в процессе блуждания достигает равновесного значения :
\\ На рисунках в обоих случаях . Слева , справа . Соединение начального условия и "конечного" стохастическими траекториями и дало живописное название процессу.
Можно рассмотреть броуновский мост в более общем случае, с произвольными коэффициентами, зависящими от времени:
Условия совместности дают:
Для частного выбора , , , где , и — константы модели, получаем решение в следующем виде ():
Заданием функции можно добиться произвольного выгиба "моста" вверх или вниз.
Точные решения уравнения Ито << | Оглавление | >> Представление стохастических решений |
---|
Стохастический мир - простое введение в стохастические дифференциальные уравнения