Как для заряженных частиц, движущихся во внешних полях, так и для самих полей, справедливы законы сохранения. Рассмотрим сначала закон сохранения энергии при движении пробной частицы в стационарном поле. Пусть потенциалы поля в лагранжиане явным образом не зависят от времени (
). В этом случае время в них входит только через траекторию частицы
. Используя уравнения Лагранжа (), стр.\,\pageref{fld_lagr_vec_form}, запишем полную производную по времени:

Перенося
в правую часть, приходим к выводу, что следующая величина, называемая полной энергией
|
(EQN)
|
сохраняется, т.е
. Производная функции Лагранжа по скоростям динамических переменных называется обобщённым импульсом. Для функции Лагранжа свободной частицы
обобщённый импульс совпадает с релятивистским импульсом. При движении частицы в электромагнитном поле он "удлиняется" (стр.\,\pageref{h_bk_fl_dA}) за счёт члена в лагранжиане (), зависящего от скорости:

Подставляя его в выражение для полной энергии (), получаем:
|
(EQN)
|
Векторный потенциал сокращается и полная энергия частицы равняется сумме энергии движения
и потенциальной энергии. Последняя определяется только значением скалярного потенциала
.
Приравнивая полную производную этого выражения по времени нулю, получаем знакомое выражение связи изменения энергии движения и силы (потенциал
явно от времени не зависит)

где учтено, что
и, следовательно,
, а магнитная составляющая силы при произведении на скорость даёт ноль
. Таким образом, стационарное электромагнитное поле полную энергию частицы
не меняет.
Введём плотность массы точечной частицы
, движущейся по траектории
. По аналогии с плотностью тока заряда (), стр.\,\pageref{j_def} для непрерывного распределения вещества определим плотность тока массы, удовлетворяющего уравнению непрерывности:
|
(EQN)
|
Как и плотность тока заряда, плотность тока массы является 4-вектором, а соответствующее уравнение непрерывности — ковариантным.
Умножим уравнение движения точечного заряда (стр.\,\pageref{lorez_force_cov}):

слева и справа на дельта-функцию
. Слева получится плотность массы
, а справа плотность заряда
. Так как плотность тока заряда равна
, получаем уравнение движения, справедливое и для непрерывного распределения массы и заряда:
|
(EQN)
|
Говоря о непрерывной среде в которой распределён заряд и масса мы подразумеваем, что в каждой точке пространства изменяется не только их плотность но и скорость. Другими словами, скорость становится функцией координат (именно так понимается плотность тока
). Поэтому полная производная по времени от 4-скорости
равна
. В результате уравнение движения () заряженной среды можно переписать следующим образом:
|
(EQN)
|
где во втором равенстве использовано уравнение непрерывности массы (). Введём следующий симметричный тензор:
|
(EQN)
|
С его помощью уравнение движения непрерывной заряженной среды () можно записать следующим образом:
|
(EQN)
|
Выпишем в явном виде компоненты тензора
:

где
и
— 3-скорость. Таким образом,
— это плотность энергии движения частиц, а
— плотность их импульса.
Перейдём теперь к сохранению энергии-импульса электромагнитного поля. Вычислим производную от лагранжиана:

В первом слагаемом подставим уравнения Лагранжа, во втором переставим частные производные
и воспользуемся формулой производной произведения:

Выражение
, при помощи символа Кронекера, можно переписать в следующем виде:
. В результате получается уравнение:
|
(EQN)
|
где введен канонический тензор энергии-импульса электромагнитного поля:
|
(EQN)
|
При помощи метрического тензора
можно поднять индекс
вверх, переписав канонический тензор энергии-импульса в эквивалентном виде:
|
(EQN)
|
Разберёмся с уравнением (), которому удовлетворяет
. По своей форме это уравнение непрерывности (стр.\,\pageref{elec_q_save}):

Для каждого из четырех значений индекса
мы имеем свой закон сохранения, аналогичный закону сохранение заряда. При этом
— имеет смысл чего-то сохраняющегося в объёме, если поток величин
через поверхность, окружающую объём равен нулю.
Для
введём плотность энергии
и плотность импульса
и запишем уравнение непрерывности в векторном виде:

Это соотношение мы уже получали при рассмотрении энергии электромагнитного поля (теорема Пойнтинга, стр.\,\pageref{energy_E}).
Найдём тензор энергии-импульса для лагранжиана электромагнитного поля в пустом пространстве (
)

Производная лагранжиана по
равна
(
\,H), поэтому:
|
(EQN)
|
К тензору энергии-импульса можно прибавить производную
, так как она тождественно удовлетворяет уравнению непрерывности. Действительно, не зависимо от уравнений движения

так как тензор
— симметричен, а
— антисимметричен и их свёртка равна нулю (стр.\,\pageref{m_antisym_sym}). Таким образом, если
удовлетворяет уравнению непрерывности, то ему будет удовлетворять также тензор

Учитывая уравнения движения (), стр.\,\pageref{cov_macswell} c
, напишем:

и разделив на
, вычтем из тензора энергии-импульса. В результате:
|
(EQN)
|
Этот тензор симметричен по
и имеет нулевой след:
(
\,H).
Тензор энергии-импульса (), полученный по формуле () называется каноническим. Этот тензор зависит как от напряженностей поля, так и от потенциалов. В отличие от него, симметричный тензор () от потенциалов не зависит. Говорят, что он является калибровочно инвариантным. Действительно, если сделать преобразование
, где
— произвольная функция координат, то тензор напряженностей
не изменится. Не поменяются также уравнения движения и симметричный тензор энергии-импульса. Так как физические результаты не должны зависеть от произвольной функции
, более предпочтительными являются калибровочно инвариантные выражения. Тем не менее произвол в выборе тензора энергии-импульса (добавление к нему выражения автоматически удовлетворяющего уравнению непрерывности) не сказывается на физических выводах. Мы вернёмся к этому вопросу чуть позже.
Выше мы симметризовали тензор энергии-импульса, предполагая, что зарядов, создающих поле в пространстве нет (свободное электромагнитное поле). В общем случае, когда токи не равны нулю, в силу уравнения (), будет сохраняться сумма тензора энергии-импульса поля () и частиц ():
|
(EQN)
|
Докажем это, вычислив 4-дивергенцию от ():

Первое слагаемое в правой части, благодаря ковариантному уравнению Максвелла, будет пропорционально 4-току. Сумма последних двух слагаемых равна нулю. Действительно, во втором слагаемом переобозначим немые (суммационные) индексы
,
, а в третьем слагаемом подставим второе ковариантное уравнение Максвелла (без источников) () стр.\,\pageref{Macwell_cov_j0}:

В результате сумма последних двух слагаемых, помеченных фигурной скобкой равна:

В последнем слагаемом переобозначим индексы
,
и получим, в силу антисимметрии
, ноль. Таким образом:

С другой стороны, в соответствии с уравнением () для тензора энергии-импульса вещества имеем
. Поэтому 4-дивергенция суммы
будет равна нулю.
Обратим внимание, что в законе сохранения () поля и заряды входят равноправным образом. Этот закон будет выполняться, если одновременно используются уравнения Максвелла для полей, создаваемых зарядами и уравнения движения (сила Лоренца) для этих-же зарядов в создаваемых ими полях. Таким образом, не производится разделения на источники поля и пробные заряды (см. также стр.\,\pageref{energy_E_int}).
В заключение выразим компоненты тензора энергии-импульса:

через напряжённости поля. Для первого слагаемого в круглых скобках, имеем:
![{\displaystyle g_{\mu \nu }F^{0\mu }F^{\nu 0}=-F^{0i}F^{i0}=\mathbf {E} ^{2},\;\;\;\;\;\;\;\;g_{\mu \nu }F^{0\mu }F^{\nu 1}=-F^{0i}F^{i1}=[\mathbf {E} \times \mathbf {B} ]_{x},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f76d735609b7784fee235792c1035c364789600)
и т.д. Во втором слагаемом стоит инвариант
. Поэтому компоненты тензора с нулевым индексом равны плотностям энергии и импульса (стр.\,\pageref{W_P_E_B}):
|
(EQN)
|
Аналогично расписываются пространственные компоненты тензора. Это даёт тензор потока импульса (см. стр.\,\pageref{em_P_consv0}):
|
(EQN)
|
Полученные в главе законы сохранения энергии и импульса непосредственно следуют из уравнения непрерывности
. Действительно, пусть заряды, находящиеся в объёме
, окруженном поверхностью
, эту поверхность не пересекают, оставаясь, внутри объёма. Запишем для этого случая интегральную форму уравнения непрерывности:

При
плотность энергии среды системы точечных зарядов равна:

Интегрируя по
, получаем суммарную энергию движения зарядов. Выражение же для энергии-импульса поля дают закон сохранения энергии (), стр.\,\pageref{energy_E_int}. Аналогично для закона сохранения импульса
Может возникнуть вопрос, почему нельзя ограничится плотностями энергии и импульса и приходится рассматривать тензор? Дело в том, что в отличии, например, от плотности тока, четвёрка величин
не образует 4-вектора. В этом легко убедиться, подставив в них преобразования Лоренца для напряжённостей поля. Простыми трансформационными свойствами обладает именно тензор
, частью компонент которого являются плотности энергии и импульса.
Релятивистский мир - лекции по теории относительности, гравитации и космологии