Пластичность волатильности:Корреляция разностей
Нестационарная статистика << | Оглавление | >> Выделение гладкой нестационарности |
---|
Простейший способ устранения относительно гладких нестационарностей во временных рядах - это переход к разностям величин. Если испытывает локально постоянный снос, то это будет приводить к появлению автокорреляций. Разность двух последовательных величин подобный снос устраняет. Даже, если тренд данных медленно изменяет своё направление, то в рамках восходящих и нисходящих участков значения разностей меняются незначительно и становятся локально квазистационарными.
Рассмотрим изменение модифицированной амплитуды размаха цены:
(16)
|
В качестве данных возьмём ежедневную статистику по фондовому индексу S\&P500 за период 1990-2008 (4791 торговый день) и курса EURUSD (1999-2008, 2495 дня, исключая праздники). Построим сначала автокорреляционные коэффициенты амплитуд ежедневного размаха цены :

Как обычно, коэффициенты достаточно высокие, однако автокорреляции для индекса S\&P500 более значительны, чем для курса EURUSD, и имеют меньшие колебания.
Перейдём теперь к разностям амплитуд двух соседних дней. Их автокорреляция тут же резко падает:

Отличия разительны. Второй автокорреляционный коэффициент в случае индекса S\&P500 падает в 24 раза, со значения 0.618 до величины 0.026. Для курса EURUSD снижение составляет 17 раз - с 0.449 до 0.027
Пунктирные линии на всех рисунках означают двойную стандартную ошибку, равную для индекса S\&P500 и для EURUSD.
Наглядно исчезновение корреляционной зависимости можно продемонстрировать на точечных диаграммах связи последовательных значений и .
Ниже на точечных диаграммах явно видны "корреляции" между индекса S\&P500 и их отсутствие для :

Точечные диаграммы для S\&P500 до и после перехода к разностям} На рисунке слева точки заполняют область с характерной формой веника, тогда как справа мы имеем симметричное облако с нулевой корреляцией. Похожие результаты обнуления автокорреляционных коэффициентов получаются также для модулей логарифмической доходности , и других финансовых инструментов.
Заметим, правда, что для разностей существует высокая отрицательная автокорреляция со сдвигом в один день . В примере выше она равна -0.49 для S\&P500 и -0.53 для EURUSD. Однако её происхождение связано не со стохастической динамикой волатильности, а с эффектом перекрытия. Поясним это на следующем примере. Предположим, что справедлива простейшая модель:
(17)
|
где , а - независимые стационарные положительные случайные числа, возникающие по причине ошибок конечности выборки по которой измеряется волатильность. В этом случае изменения имеют нулевое среднее . Первый автоковариационный коэффициент равен:
(18)
|
где - дисперсия случайных величин . Среднее квадрата возникает в слагаемом , которое и ответственно за эффект перекрытия. Аналогичным образом получается дисперсия разности . Поэтому первый автокорреляционный коэффициент в точности равен , что и наблюдается выше. Корреляции со сдвигами будут нулевыми, так как перекрытия уже не возникает.
Тот факт, что для автокорреляций разностей с хорошей степенью точности выполняются соотношения и при свидетельствует в пользу модели (17). Однако, если бы параметр был константой, то не возникало бы корреляций между последовательными значениями волатильности (в силу независимости ). Она может возникать, как мы показали выше, в результате плавного изменения величины со временем. Таким образом, фактически , и является гладкой функцией времени.
Как для окончательного прояснения ситуации с , так и для целей дальнейших исследований нам необходима методология выделения гладкой нестационарной составляющей волатильности.
Примчания
Нестационарная статистика << | Оглавление | >> Выделение гладкой нестационарности |
---|