Пластичность волатильности:Выделение гладкой нестационарности

Материал из synset
Перейти к: навигация, поиск
Корреляция разностей << Оглавление >> Автокорреляция остатков

Для выделения медленно меняющейся составляющей во временном ряду мы будем использовать фильтр Ходрика-Прескотта (далее HP-фильтр). Гладкая составляющая ряда находится в результате минимизации квадратов её отклонений от эмпирических данных , одновременно с требованием минимальности кривизны :

(19)

где вторая производная в разностях равна . Степень гладкости будет тем выше, чем больше параметр . Значения варьируются в очень широком диапазоне, поэтому мы будем приводить его десятичный логарифм , представляя .

При сглаживании сильно зашумлённых данных всегда присутствует произвол в выборе параметра . Если мал, существует опасность обнаружить нестационарность там, где её нет. При слабом сглаживании гладкая составляющая будет повторять любые локальные флуктуации, не имеющие к нестационарности ни какого отношения. С другой стороны, при сильном сглаживании мы рискуем упустить важные детали интересующей нас динамики.

Поэтому нам необходим некоторый статистический критерий степени сглаживания для уменьшения возможного произвола. Как обычно, будем в качестве эталона использовать модель случайного блуждания.

Среднее значение логарифмической доходности равно относительному изменению цены внутри временного лага . Волатильность будем восстанавливать по сглаженному среднему модифицированной амплитуды размаха цены внутри лага . Говоря о волатильности, всегда подразумеваем волатильность лага (минутную, часовую, дневную и т.д.).

Если число дискретных блужданий цены внутри лага достаточно велико, то, независимо от их распределения, логарифмические доходности будут нескоррелированными гауссовыми случайными числами. Сгладим их среднее значение при помощи HP-фильтра с различными параметрами и вычислим типичную величину колебаний вокруг среднего по всем эмпирическим точкам:

(20)

Аналогично определяется ошибка вычисления сглаженной волатильности лага. Численные эксперименты показывают, что эти ошибки, с хорошей степенью точности, убывают с ростом параметра следующим образом:

(21)

и практически не зависят от числа эмпирических точек . Более того, ошибки не зависят и от типа распределения (в случае дискретной модели лагового блуждания). Малая степень 1/8 объясняет причину необходимости использования широкого диапазона для изменения параметра .

Соотношения (21) задают типичный коридор колебаний сглаженных величин и , которые являются флуктуациями и статистически не значимы в случае постоянства волатильности. Поэтому они будут нашими ориентирами, по крайней мере, на горизонтальных участках .

Приведём типичный пример численного моделирования (, ) для трёх значений ():

Volat pic17.png

Более жирная линия соответствует (), а тонкая - (). Сплошные горизонтальные "уровни значимости" определяют двойную ошибку в случае , а пунктирные - для и . В отличие от уровней значимости корреляционных коэффициентов, мы имеем гладкую величину , которая может некоторое время "жить" вне заданного ошибкой диапазона. Тем не менее, соотношения (21) характеризуют значение типичных колебаний сглаженной величины для случайных данных.

Однако в ситуации нестационарности, которая нас, собственно, и интересует, необходимо выдерживать баланс между гладкостью и отсутствием излишнего сглаживания. Так, если , где - общая длительность эксперимента, получаем следующие варианты сглаживания волатильности, оцененной по модифицированной амплитуде размаха:

Volat pic18.png

В данном случае оптимальным значением была , так как испытывает шумящие колебания вокруг истинной волатильности, а - фактически не "ловит" синусоиду. Однако ситуация сильно ухудшается, если волатильность испытывает скачок. Так, пусть половину из "торговых дней" волатильность была , а вторую половину . Тогда сглаживания с различными дают такие результаты:

Volat pic19.png

Видно, что в этом случае существенно размывает ступеньку. Сглаживание с размывает скачок волатильности существенно меньше, но зато даёт шумящие и незначимые колебания при постоянстве .


Корреляция разностей << Оглавление >> Автокорреляция остатков