Еще немного определений
Группа перестановок << | Оглавление (Последняя версия в: Глава 5) | >> Представления групп |
---|
Рассмотрим подгруппу группы . Возьмём некоторый элемент , не принадлежащий , и образуем новое множество элементов:
которое называется левым смежным классом подгруппы (аналогично определяются правые смежные классы , совпадающие с левыми для инвариантной подгруппы ). Все элементы класса различны (если , умножив на , получим Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle h_i=h_j} ) и ни один его элемент Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\,\mathbf{H}} не принадлежит Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}} (если Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\,h_i=h_j} , то Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g=h_j\,h^{-1}_i\in \mathbf{H}} , что противоречит условию Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\not\in\mathbf{H}} ). Поэтому — это множество имеющее столько же элементов, что и у подгруппы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}} , и не пересекающееся с ней.
Это свойство можно использовать для разбиения группы на смежные классы (подмножества). Действительно, если объединение Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}} и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\,\mathbf{H}} не даёт ещё всех элементов Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}} , возьмём Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g'} не принадлежащий ни Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}} , ни , и образуем третье множество Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g'\,\mathbf{H}} . Его элементы, также как и элементы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\,\mathbf{H}} не принадлежат Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}} . Более того, они не принадлежат и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\,\mathbf{H}} (если бы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g'\,h_i=g\,h_j} , то Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g'=g\cdot (h_j\,h^{-1}_i)} , и это противоречит тому, что не принадлежит Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\,\mathbf{H}} , т.к. Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle h_ih_j^{-1}\in \mathbf{H}} ). В результате, при помощи подгруппы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}} порядка Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} , возникает разбиение группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}} , на Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m} непересекающихся смежных классов (используют знак плюс, вместо объединения ):
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{G} = \mathbf{H} + g\,\mathbf{H}+g'\,\mathbf{H} + ... = g_1\,\mathbf{H}+g_2\,\mathbf{H}+...+g_m\,\mathbf{H},}
где Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g_1=e} . Число Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m} называется индексом подгруппы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}} в группе Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}} . Порядок группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}} оказывается равным , и порядок Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle h} подгруппы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}} является его делителем. Поэтому справедлива теорема Лагранжа:
\it Порядок любой подгруппы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}} конечной группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}} является одним из делителей порядка группы .
Например, подгруппы , группы имеют порядки 3 и 2. Эти числа являются делителями порядка группы равного 6. Для группы можно сделать следующее разложение на классы:
Из теоремы Лагранжа следует, что группы, порядок которых является простым числом, не могут иметь несобственных подгрупп.
Подчеркнём, что смежные классы не являются группами, так как, например, единичный элемент находится только в исходной порождающей подгруппе . Однако, как мы сейчас увидим, каждый класс, построенный по инвариантной подгруппе является элементом некоторой группы!
Аналогично "произведению" элемента группы на множество, можно определить операцию умножения двух множеств и , как множество состоящее из всех упорядоченных произведений: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{A}\,\mathbf{B}=\{a_1b_1, a_1b_2,...,a_2b_1,....,a_nb_m\}} . Результаты некоторых произведений могут совпадать, поэтому размерность этого множества будет меньше чем Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n\cdot m} . В частности Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H} \mathbf{H}} — это произведение всех элементов подгруппы, которые снова принадлежат этой подгруппе: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H} \mathbf{H}=\mathbf{H}} . В силу ассоциативности Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{A}(a \mathbf{B})=(\mathbf{A}a) \mathbf{B}} .
Произведение смежных классов построенных по инвариантной подгруппе обладает групповыми свойствами. Например, в силу Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\mathbf{H}=\mathbf{H}g} , инвариантная подгруппа является "единичным" элементом:
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{H}\,(g\mathbf{H}) = (\mathbf{H}g)\,\mathbf{H} = g\mathbf{H}\mathbf{H} = g\mathbf{H}.}
Т.е. попарное произведение всех элементов инвариантной группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}} и её левого смежного класса Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\mathbf{H}} снова приводит к этому же смежному классу. Аналогично попарные произведения двух смежных классов приводят к смежному классу построенному по элементу Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle ab} : Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (a\,\mathbf{H})\,(b\,\mathbf{H}) = (a\,b)\,\mathbf{H}.} Наконец, произведение смежных классов по обратным элементам дает единичный класс: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (a\mathbf{H})(a^{-1}\mathbf{H})=\mathbf{H}} .
Таким образом, если в группе порядка имеется инвариантная подгруппа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}\subset\mathbf{G}} порядка Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle h} , то Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m} смежных классов Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G} = \mathbf{H}+g_2\mathbf{H}+...+g_m\mathbf{H}} являются элементами т.н. фактор-группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}/\mathbf{H}} :
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \{\mathbf{H}, \;g_2\mathbf{H},...,\;g_m\mathbf{H}\}=\mathbf{G}/\mathbf{H}.}
Инвариантная подгруппа играет в Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}/\mathbf{H}} роль единичного элемента.
Рассмотрим инвариантную подгруппу Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}=\{e,a,a^2\}} группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{D_3}} . Возьмём любой элемент не находящийся в подгруппе, например Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle b} :
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{H}=\{e,a,a^2\},\;\;\;\;\;\; b\mathbf{H}=\{b,d,c\},\;\;\;\;\;\mathbf{D_3}=\{e,a,a^2,b,c,d\}=\mathbf{H}+b\mathbf{H}.}
Эти два множества обладают групповой таблицей умножения Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{C_2}} . Так:
где после перемножения множеств, при помощи таблицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{D_3}} оставлены только неповторяющиеся элементы, составляющие класс Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle b\mathbf{H}} . Аналогично Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (b\mathbf{H})\,(b\mathbf{H})=\mathbf{H}} , и т.д. Инвариантная подгруппа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{H}=\mathbf{C_3}} имеет порядок 3, и есть только один смежный класс, поэтому порядок фактор-группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{D_3}/\mathbf{C_3}} равен 2=6/3. Её таблица умножения совпадает с Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{C_2}} .
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \bullet} Элемент называется сопряжённым к элементу Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle z} , если существует такой Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g} , что:
В группе элементы и сопряжены, так как Сопряженность элементов напоминает определение сопряжения подгруппы (стр.\,\pageref{sym_inv_gr_def}), но относится не к множеству элементов, а к одному (точнее двум, связанным сопряжением).
Сопряженность элементов обладает транзитивностью: если сопряжен , а сопряжен к , то и , сопряжены:
Понятно, что если сопряжен , то и сопряжён .
Это свойство называется симметричностью. Аналогично, справедлива рефлексивность, т.е. элемент сопряжён сам себе. В этом случае .
Обозначим факт сопряженности следующим образом: и назовем его отношением эквивалентности. Свойства рефлексивности, симметричности и транзитивности сопряженных элементов будут иметь вид:
Невозможно разобрать выражение (неизвестная функция «\begin{array}»): {\displaystyle \begin{array}{lll} рефлексивность:\;\; & x\sim x\\ симметричность:\;\; & x\sim y\;\;\;\;\;\;\;\;\;\;\;\; &=>\;\;\;\;\;\;y\sim x\\ транзитивность:\;\; & x\sim y, \;\;y\sim z\;\;\;\;\;&=>\;\;\;\;\;\;x\sim z\\ \end{array}}
Этими же свойствами обладает и равенство элементов . Однако, если равенство означает полное совпадение и , то эквивалентность относительно сопряжения объявляет "похожими" некоторые группы элементов.
Так, группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{D_3}} и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{D_4}} разбиваются на следующие классы эквивалентности (или классы сопряженных элементов):
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \begin{array}{l} \mathbf{D_3}:\;\;\;\{e\},\;\{a,a^2\},\;\{b,c,d\};\\ \mathbf{D_4}:\;\;\;\{e\}, \;\{a,a^3\},\;\{a^2\},\;\{b,c\},\;\{d,f\}. \end{array}}
Важным свойством класса эквивалентности к сопряжению является то, что все элементы данного класса имеют одинаковый порядок:
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle a^m = e,\;\;b=gag^{-1}\;\;\;\;=>\;\;\;b^m=(gag^{-1})^m=ga^mg^{-1}=geg^{-1}=e.}
Единичный элемент любой группы образует "класс эквивалентности" состоящий только из него самого. В абелевой группе все элементы коммутируют друг с другом и сопряженным к элементу будет он сам. Поэтому, также как и единичный элемент, каждый элемент абелевой группы образует класс сопряженности состоящий из этого одного элемента.
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \bullet} Элемент Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle z} является самосопряженным элементом, если для любого сопряжение снова даёт Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle z} :
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \forall g\in \mathbf{G}\;\;\;\;\;\;\; z=gzg^{-1},\;\;\;\;\;или\;\;\;\;\;\;gz=zg.}
Другими словами, самосопряженный элемент коммутирует (перестановочен) с любым элементом группы. Это свойство не стоит путать с определением инвариантной подгруппы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\,\mathbf{H}=\mathbf{H}\,g} , в котором, вообще говоря слева и справа стоят разные элементы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\,h_i=h_j\,g} из подмножества H.
Множество всех самосопряженных элементов Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{Z}=\{z_1,...,z_k\}} образует абелеву подгруппу Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{Z}\subset \mathbf{G}} , которую называют центром. Одновременно центр является инвариантной подгруппой (но не наоборот!). В группе центр тривиален: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \{e\}} , а в Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{D_4}} нетривиальным центром является Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{Z}=\{e, a^2\}} . Так как Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (a^2)^2=e} , то это группа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{C_2}} .
В любой абелевой группе каждый элемент является самосопряжённым, и вся такая группа является центром. Самосопряженный элемент образует класс эквивалентности из единственного элемента - самого себя.
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \bullet} Нормализатором элемента называют множество Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{N}_a} всех элементов группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \bf G} , которые коммутируют с Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle a} . Нормализатор самосопряженного элемента совпадает со всей группой.
Элементы каждого нормализатора обладают групповыми свойствами. Поэтому нормализатор элемента Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle a\in\mathbf{G}} является подгруппой группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}} . Её порядок равен Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n/m} , где — индекс в разложении Лагранжа:
Справедлива теорема:
Число элементов сопряженных к равно индексу в разложении Лагранжа по нормализатору .
Действительно, чтобы построить класс эквивалентности к надо перебрать все элементы , отобрав неповторяющиеся значения . Пусть сначала пробегает элементы первого смежного класса . Тогда . Для имеем (так как не входит в и с не коммутирует). Так, для каждого из сопряженных классов получим различных эквивалентных элементов.
В группе есть 4 нормализатора:
Разложение Лагранжа этой группы имеет вид
поэтому в классе эквивалентности к есть 3 элемента (это ).
Изоморфизм — это взаимооднозначная функция связывающая два элемента множества , и сохраняющая групповое умножение:
(EQN)
|
Обратимость функции означает, что её упорядоченная область значений является некоторой перестановкой области определений. Другими словами, две конечные группы изоморфны, если они эквивалентны с точностью до переобозначения своих элементов. Поэтому изоморфизм абстрактных групп называется также автоморфизмом (изоморфизм группы "самой в себя").
Невозможно разобрать выражение (неизвестная функция «\multicolumn»): {\displaystyle \begin{array}{r|ccc|} \multicolumn{1}{c}{} & \multicolumn{1}{c}{a} & \multicolumn{1}{c}{b} & \multicolumn{1}{c}{c}\\ \cline{2-4} a & b & c &\bullet \\ \mathbf{G}_1:\; b & c & \bullet &a \\ c &\bullet & a & b \\ \cline{2-4} \end{array} \begin{array}{r|ccc|} \multicolumn{1}{c}{} & \multicolumn{1}{c}{a} & \multicolumn{1}{c}{b} & \multicolumn{1}{c}{c}\\ \cline{2-4} a & c & \bullet & c \\ \;\;\;\mathbf{G}_2:\; b &\bullet & c & a \\ c & b & a &\bullet \\ \cline{2-4} \end{array}\;\;\;\;\;\; \begin{array}{l} \mathbf{G}_1 \approx\mathbf{G}_2,\;\;\;\;\;\mathbf{G}_2=\Psi(\mathbf{G}_1)\\[2mm] \Psi(\{e, a, b, c\})=\{e,a, c,b \} \end{array}}
Что бы обнаружить автоморфизм, можно начать с поиска элемента порядка 1. В таблице он единственен Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle b^2=e} . Аналогично, в Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}_2} : Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c^2=e} , поэтому Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Psi(b)=c} . Выбор соответствия для остальных элементов в данном случае — произволен.
Рассматривая для группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}} все различные функции Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle y=\Psi_k(x)} проводящие подобные перестановки, мы приходим к группе автоморфизмов обозначаемой . Элементами этой группы являются функции, а умножением — композиция функций Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Psi_k(x)=\Psi_j(\Psi_i(x))} , выполняющих последовательные автоморфизмы. Единичным преобразованием является Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Psi_1(x)=x} . Обратным — обратная функция Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Psi^{-1}_k(\Psi_k(x))=x} . Для умножения двух элементов Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle x} , Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle y} и двух последовательных автоморфизмов Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Psi_i} и (см. ()):
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Psi_i(\Psi_j(x))\cdot \Psi_i(\Psi_j(y)) = \Psi_i(\Psi_j(x)\cdot \Psi_j(y)) = \Psi_i(\Psi_j(x\cdot y)).}
Внутренним автоморфизмом называют автоморфизм возникающий при применении операции сопряжения:
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle x\to \Psi_g(x) = gxg^{-1}.}
Абелевы группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{C_n}} являются самосопряжёнными, поэтому сопряжение не создаёт внутренних автоморфизмов (кроме тривиального единичного Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Psi_g(x)=x} , для любого Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle g\in\mathbf{G}} ). Для группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{D_4}} можно, например, так переставить элементы:
Внутренние автоморфизмы вида являются подгруппой группы всех автоморфизмов .
Введем еще одно понятие. Пусть на множествах и заданы групповые функции умножения. Прямым произведением двух множеств и называют множество всех упорядоченных пар . Определим на этом множестве новую группу, при помощи закона умножения:
Так как таблицы умножения и известны, нам становится известной и таблица для группы на . Подобный метод создания новых групп особенно интересен в обратную сторону, когда выясняется, что некоторую группу можно представить в виде прямого произведения двух других меньших групп, свойства которых исследовать проще.
Найдём прямое произведение группы саму на себя:
Невозможно разобрать выражение (неизвестная функция «\multicolumn»): {\displaystyle \begin{array}{r|c|} \multicolumn{1}{c}{} & \multicolumn{1}{c}{\alpha} \\ \cline{2-2} \alpha & e \\ \cline{2-2} \end{array} \begin{array}{r|c|l} \multicolumn{1}{c}{} & \multicolumn{1}{c}{\alpha} \\ \cline{2-2} \;\times \; \alpha & e & \;=\;\\ \cline{2-2} \end{array} \begin{array}{r|ccc|l} \multicolumn{1}{c}{} & \multicolumn{1}{c}{(\alpha,e)} & \multicolumn{1}{c}{(e,\alpha)} & \multicolumn{1}{c}{(\alpha,\alpha)}\\ \cline{2-4} (\alpha,e) & (e,e) & (\alpha,\alpha) & (e,\alpha) \\ (e,\alpha) & (\alpha,\alpha) & (e,e) & (\alpha,e) & \;=\; \\ (\alpha,\alpha) & (e,\alpha) & (\alpha,e) & (e,e) \\ \cline{2-4} \end{array} \begin{array}{r|ccc|c} \multicolumn{1}{c}{} & \multicolumn{1}{c}{a} & \multicolumn{1}{c}{b} & \multicolumn{1}{c}{c}\\ \cline{2-4} a & e & c & b &\\ b & c & e & a & =\mathbf{D_2}\\ c & b & a & e &\\ \cline{2-4} \end{array}}
Получившаяся группа из 4-х элементов (порядок равен 4) может быть записана следующим образом: .
Пусть - единичный элемент группы . Тогда множество элементов , Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (f_1, g_2)} ,...,Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (f_1, g_m)} образуют инвариантную подгруппу группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathcal F\times \mathcal G} . Эта подгруппа изоморфна группе Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathcal G} (Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \lessdot} \,H).
Если две инвариантные подгруппы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{A}} и группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}} пересекаются только на единичный элемент, и произведение множеств Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{A}\mathbf{B}} приводит к множеству Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}} , то группа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{G}} изоморфна прямому произведению Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{A}\times\mathbf{B}} :
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle (inv)\;\;\mathbf{A},\mathbf{B}\subset \mathbf{G},\;\;\;\;\mathbf{A}\cap\mathbf{B}=\{e\},\;\;\;\mathbf{A}\mathbf{B}=\mathbf{G}\;\;\;\;=>\;\;\;\;\mathbf{G}\approx\mathbf{A}\times\mathbf{B}.}
Это утверждение стоит попробовать доказать (\,H), доказав сперва, что если две инвариантные подгруппы не имеют общих элементов (кроме единичного), то их элементы коммутируют друг с другом (Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \lessdot} \,H).
\hrule
В теории групп существует множество определений, которые необходимо выучить, каждый раз испытывая удивление тому, что 4 простые аксиомы порождают такое разнообразие алгебраических структур. Напомним наиболее важные термины:
группа, порядок группы и элемента, абелева группа, подгруппа, сопряженная и инвариантная подгруппы, простая и полупростая группы, изоморфизм, гомоморфизм, ядро, смежный класс, фактор-группа, класс эквивалентности, самосопряженный элемент, центр, нормализатор, группа автоморфизмов, прямое произведение.
Группа перестановок << | Оглавление (Последняя версия в: Глава 5) | >> Представления групп |
---|
Релятивистский мир - лекции по теории относительности, гравитации и космологии