Нелинейные преобразования — различия между версиями
WikiSysop (обсуждение | вклад) |
WikiSysop (обсуждение | вклад) |
||
(не показаны 3 промежуточные версии этого же участника) | |||
Строка 1: | Строка 1: | ||
{| width="100%" | {| width="100%" | ||
| width="30%"|[[Группа Пуанкаре]] << | | width="30%"|[[Группа Пуанкаре]] << | ||
− | ! width="40%"|[[Релятивистский мир|Оглавление]] (Последняя версия в: [http://synset.com/pdf/ | + | ! width="40%"|[[Релятивистский мир|Оглавление]] (Последняя версия в: [http://synset.com/pdf/relworld_06.pdf Глава 6]) |
| width="30%" align="right"| >> [[Эрлангенская программа]] | | width="30%" align="right"| >> [[Эрлангенская программа]] | ||
|} | |} | ||
Строка 59: | Строка 59: | ||
Трансляция и масштабирование являются его частными случаями. В качестве упражнения стоит проверить, что оно удовлетворяет условиям (), (), и найти функцию <math>\textstyle \mathbf{c}=\phi(\mathbf{b},\mathbf{a})</math>. Вторым упражнением является проверка того, что преобразование <math>\textstyle x\mapsto x'=a_1\, x^2+ a_2\, x + a_3</math> не удовлетворяет (), и, следовательно, не является группой. | Трансляция и масштабирование являются его частными случаями. В качестве упражнения стоит проверить, что оно удовлетворяет условиям (), (), и найти функцию <math>\textstyle \mathbf{c}=\phi(\mathbf{b},\mathbf{a})</math>. Вторым упражнением является проверка того, что преобразование <math>\textstyle x\mapsto x'=a_1\, x^2+ a_2\, x + a_3</math> не удовлетворяет (), и, следовательно, не является группой. | ||
− | <math>\textstyle \bullet</math> Заметим, что всегда можно провести замену координат <math>\textstyle \tilde{\mathbf{x}}=h(\mathbf{x})</math> и переопределить параметры группы <math> | + | <math>\textstyle \bullet</math> Заметим, что всегда можно провести замену координат <math>\textstyle \tilde{\mathbf{x}}=h(\mathbf{x})</math> и переопределить параметры группы <math>\tilde{\mathbf{a}}=\psi(\mathbf{a})</math>. Так, переход от декартовых координат <math>\textstyle \mathbf{x}=(x,y)</math> к полярным <math>\textstyle \tilde\mathbf{x}=(r, \chi)</math>, группу 2-мерных поворотов делает трансляционной: |
:<center><math>\begin{array}{l} x \mapsto x' = x \cos a + y \sin a\\ y \mapsto y' = -x \sin a + y \cos a,\\ \end{array} \;\;\;\; \left\{ \begin{array}{l} x = r \cos \chi\\ y = r \sin \chi\\ \end{array} \right\} \;\;\;\;=>\;\;\;\; \begin{array}{l} r\mapsto r' = r \\ \chi \mapsto \chi' = \chi + a.\\ \end{array}</math></center> | :<center><math>\begin{array}{l} x \mapsto x' = x \cos a + y \sin a\\ y \mapsto y' = -x \sin a + y \cos a,\\ \end{array} \;\;\;\; \left\{ \begin{array}{l} x = r \cos \chi\\ y = r \sin \chi\\ \end{array} \right\} \;\;\;\;=>\;\;\;\; \begin{array}{l} r\mapsto r' = r \\ \chi \mapsto \chi' = \chi + a.\\ \end{array}</math></center> | ||
Строка 184: | Строка 184: | ||
Для получения дифференциальных ограничений на функции <math>\textstyle \mu^\gamma_\beta(\mathbf{a})</math> возьмём производную этого уравнения по <math>\textstyle b^\alpha</math> и положим <math>\textstyle \mathbf{b}=\mathbf{0}</math>. Учитывая () имеем: | Для получения дифференциальных ограничений на функции <math>\textstyle \mu^\gamma_\beta(\mathbf{a})</math> возьмём производную этого уравнения по <math>\textstyle b^\alpha</math> и положим <math>\textstyle \mathbf{b}=\mathbf{0}</math>. Учитывая () имеем: | ||
− | + | <center>[[File:sym_tbl11.png]]</center> | |
Переставив индексы <math>\textstyle \alpha</math> и <math>\textstyle \beta</math>, и вычтя из исходного уравнения, получим: | Переставив индексы <math>\textstyle \alpha</math> и <math>\textstyle \beta</math>, и вычтя из исходного уравнения, получим: | ||
Строка 231: | Строка 231: | ||
{| width="100%" | {| width="100%" | ||
| width="30%"|[[Группа Пуанкаре]] << | | width="30%"|[[Группа Пуанкаре]] << | ||
− | ! width="40%"|[[Релятивистский мир|Оглавление]] (Последняя версия в: [http://synset.com/pdf/ | + | ! width="40%"|[[Релятивистский мир|Оглавление]] (Последняя версия в: [http://synset.com/pdf/relworld_06.pdf Глава 6]) |
| width="30%" align="right"| >> [[Эрлангенская программа]] | | width="30%" align="right"| >> [[Эрлангенская программа]] | ||
|} | |} | ||
---- | ---- | ||
[[Релятивистский мир]] - лекции по теории относительности, гравитации и космологии | [[Релятивистский мир]] - лекции по теории относительности, гравитации и космологии |
Текущая версия на 19:02, 2 июля 2013
Группа Пуанкаре << | Оглавление (Последняя версия в: Глава 6) | >> Эрлангенская программа |
---|
Рассмотрим вектор переменных , которые мы будем называть далее координатами, и набор параметров определяющих в общем случае нелинейное преобразование:
Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle x^i\mapsto x'^i = f_i(a^1,....,a^s,\;x^1,...,x^n),\;\;\;\;или\;\;\;\;\mathbf{x}\mapsto \mathbf{x}' = \mathbf{f}(\mathbf{a},\mathbf{x}) = \hat{T}_{\mathbf{a}}\mathrm{x}.}
Например, в одномерном случае преобразования трансляции и масштабирования (они линейны!) имеют вид:
Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle {трансляция}:\;\;x\mapsto x'=x+a,\;\;\;\;\;\;\;\;{масштабирование}:\;\;x\mapsto x'=e^a\cdot x.}
Нас будут интересовать преобразования образующие непрерывную группу. Пусть при помощи параметров мы перешли в координатном пространстве от точки к , а затем, при помощи , от к . Пусть существует некоторое , которое позволяет сразу перейти от к :
(EQN)
|
Кроме этого, предположим, что существует единичное преобразование с параметром e, не изменяющее координат, и обратное, с параметром , которое возвращает преобразованное к исходному:
(EQN)
|
Для преобразований трансляции и масштабирования единичный параметр , а обратный .
Если число параметров меньше чем размерность пространства , то групповое преобразование имеет простую геометрическую интерпретацию. Так, при функция задаёт кривую в пространстве . Если зафиксировать "начальную" точку и начать изменять параметр , мы получим непрерывное множество точек образующих некоторую линию. Если взять другую точку в пространстве не лежащую на линии, мы получим другую кривую. Таким образом всё пространство "расслаивается" на множество подобных кривых.
Однако, нас интересуют не любые кривые заданные параметрическим образом, а лишь те, которые обладают свойством эквивалентности всех своих точек. В этом случае любая точка кривой может выступить в качестве "начальной", и при помощи одной и той же функции можно из неё "продолжить" кривую дальше. Подобным образом двухпараметрические группы при определяют некоторую поверхность, обладающую свойством симметрии (равноправия всех своих точек), и т.д.
Функция композиции параметров двух последовательных непрерывных преобразований является векторной, -компонентной функцией: . Она удовлетворяет таким же функциональным уравнениям как и в случае линейных преобразований (стр.\,\pageref{mat_group_def5}):
(EQN)
|
Без потери общности будем считать, что единичное преобразование соответствует нулевому значению параметров: . Как мы видели, в окрестности нуля эта функция имеет вид:
(EQN)
|
a антисимметричные по нижним индексам величины называются структурными константами.
Групповые свойства являются сильными ограничениями на возможный вид преобразований. Например, в одномерном случае наиболее общее преобразование, образующее группу, имеет дробно-линейный вид:
(EQN)
|
Трансляция и масштабирование являются его частными случаями. В качестве упражнения стоит проверить, что оно удовлетворяет условиям (), (), и найти функцию . Вторым упражнением является проверка того, что преобразование не удовлетворяет (), и, следовательно, не является группой.
Заметим, что всегда можно провести замену координат и переопределить параметры группы . Так, переход от декартовых координат к полярным , группу 2-мерных поворотов делает трансляционной:
Аналогично, заменой масштабирование превращается в трансляционное преобразование .
Поэтому, говоря о единственности дробно-линейных преобразований для , на самом деле, подразумевается более общее преобразование:
и аналогично, для переопределения параметров группы .
Рассмотрим произвольное, бесконечно - малое преобразование, разложив его в ряд Тейлора по параметрам :
Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle f^k(\mathbf{a},\mathbf{x}) = x^k + u^k_{\alpha}(\mathbf{x})\,a^\alpha + ...., \;\;\;\;\;\;\;\;\;\;где\;\;\; u^k_{\alpha}(\mathbf{x}) = \frac{\partial f^k(\mathbf{a},\mathbf{x})}{\partial a^\alpha}\Bigr|_{\mathbf{a}=0}. } | (EQN)
|
Величины называются касательными векторами, так как они касаются кривой (поверхности и т.д.) при бесконечно малом изменении параметров . Действительно, разница между двумя соседними точками (сдвиг) на кривой или поверхности равна: .
Аналогично, закон композиции можно разложить в ряд по первому аргументу (параметры второго преобразования):
Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \phi^\gamma(\mathbf{b},\mathbf{a}) = a^\gamma + \mu^\gamma_\alpha(\mathbf{a})\,b^{\alpha}+..., \;\;\;\;\;\;\;\;\;\;где\;\; \mu^\gamma_{\alpha}(\mathbf{a}) = \frac{\partial \phi^\gamma(\mathbf{b}, \mathbf{a})}{\partial b^\alpha}\Bigr|_{\mathbf{b}=0}. } | (EQN)
|
Так как при малых параметрах преобразования и для справедливо разложение (), то функция ( — символ Кронекера) имеет следующие значения:
(EQN)
|
Функции и , как и структурные константы , играют важную роль в теории нелинейных непрерывных групп.
Возьмём производную по от закона композиции преобразований:
и приравняем . Левая часть по определению () равна , а производная правой берётся как от сложной функции:
Таким образом, функция удовлетворяет дифференциальному уравнению:
(EQN)
|
Если функции одной (векторной) переменной и известны, то решение этого уравнения с начальным условием позволяет восстановить зависимость функции двух переменных .
Найдём уравнение которому удовлетворяют касательные векторы . Возьмём производную () по и положим :
где мы воспользовались определением () и значениями (). Переставим местами индексы , и вычтем из исходного уравнения. Учитывая, что вторая производная по и симметрична, получаем:
(EQN)
|
где и - структурные константы группы.
Перепишем () в операторной форме при помощи величин:
(EQN)
|
которые удовлетворяют алгебре Ли:
(EQN)
|
где как и раньше — коммутатор операторов. Действительно, так как операторы, соотношение () понимается в смысле его действия на произвольную функцию :
где раскрыта производная произведения и учтены уравнения ().
Рассмотрим в качестве примера группу масштабирования и сдвига одномерного пространства . В этом случае, в соответствии с (), касательные векторы равны и (индекса нет, так это одномерный случай). Поэтому генераторы группы имеют вид:
Вычислим их коммутатор:
Таким образом
(EQN)
|
и не нулевые структурные константы равны .
В качестве упражнения (\,H), предлагается найти генераторы и структурные константы для дробно-линейной группы (), стр.\,\pageref{group_1D_drlin}.
Функция композиции также как и удовлетворяет определённым дифференциальным уравнениям. Их вывод полностью аналогичен выводу уравнений для и . Вообще, параметрическую композицию можно рассматривать как преобразование задающее некоторую кривую в параметрическом пространстве начинающуюся в точке при изменении парамера .
Запишем для закона композиции свойство ассоциативности:
возьмём его производную по и приравняем . Учитывая определение (), имеем
Поэтому уравнение для функции имеет вид:
(EQN)
|
Для получения дифференциальных ограничений на функции возьмём производную этого уравнения по и положим . Учитывая () имеем:

Переставив индексы и , и вычтя из исходного уравнения, получим:
(EQN)
|
где . Взяв производную по и положив , можно снова прийти к тождеством Якоби для структурных констант () стр.\,\pageref{group_jacobi}.
При известных структурных константах , решение уравнения () даёт функцию . С её помощью далее решается уравнение () и находится функция композиции .
В случае трансляций и масштабирования одномерного пространства закон композиции имеет вид (функция и параметры имеют 2 компоненты и индексы опущены вниз):
(EQN)
|
Следовательно, , а остальные коэффициенты равны нулю. Поэтому, ненулевая структурная константа равна , что и было получено выше ().
Иногда удачный выбор способа параметризации группы существенно упрощает групповое преобразование. Рассмотрим случай однопараметрической группы . В этом случае структурные константы равны нулю. Уравнение () для функции тождественно выполняется, а уравнение () для имеет вид:
Интегрируя его с "начальным" условием , получаем:
где . Таким образом, с точностью до переопределения параметров однопараметрическое преобразование должно иметь аддитивный закон композиции . Для трансляции и поворотов в плоскости это очевидно, а для преобразования масштабирования в виде имеем . Параметризация при которой называется канонической.
Функция координат называется инвариантом группы, если её функциональная зависимость не изменяется при групповом преобразовании и, следовательно, не зависит от . Поэтому производная по в нуле должна равняться нулю:
Справедливо и обратное утверждение: если некоторая функция удовлетворяет уравнениям , то она будет инвариантной относительно группы определяемой генераторами .
Для однопараметрической группы генератор один. В -мерном пространстве уравнение является уравнением первого порядка в частных производных. В соответствии с методом характеристик оно решается при помощи системы обыкновенных дифференциальных уравнений:
Эта система имеет интегралов , ..., . Общее решение уравнения будет иметь вид , где - произвольная функция аргументов. Функции , называются базовыми инвариантами. Произвольный инвариант является их функцией. В качестве упражнения, предлагается найти инварианты 1-параметрической группы масштабирования 2-мерного пространства , (\,H) и группы (\,H).
Группа Пуанкаре << | Оглавление (Последняя версия в: Глава 6) | >> Эрлангенская программа |
---|
Релятивистский мир - лекции по теории относительности, гравитации и космологии