Пластичность волатильности:Внутридневная волатильность
Измерение волатильности << | Оглавление | >> Эмпирические особенности автокорреляций |
---|
Продемонстрируем эффективность модифицированной амплитуды размаха на реальных данных. Рассмотрим 15-минутные котировки на рынке Форекс за период с 2004 по 2008 год для пары EURUSD. Произведём их агрегирование в дневные точки, вычисляя, кроме минимального и максимального значения, также внутридневную волатильность на основе логарифмических доходностей 15-минутных лагов:
(4)
|
В течение дня мы имеем пятнадцатиминутных лагов. Множитель в (4) приводит 15-минутную волатильность к дневному значению. Временная динамика внутридневной волатильности имела следующий вид (1250 торговых дней, без учёта выходных и основных праздников):

Видно, что, начиная с осени 2008-го года, волатильность валютного рынка, как, впрочем, и других финансовых рынков, существенно выросла, в связи с обострением финансового кризиса. Однако, даже в докризисный период волатильность имеет ярко выраженную нестационарную составляющую.
Предположим, что полученная по выборке из чисел выборочная волатильность лучше характеризует "истинную" волатильность, чем только дневной базис из трёх чисел [1], [2], [3], [4]. Более качественная мера волатильности, основанная на базисе, должна быть лучше скоррелирована с внутридневной волатильностью. Построим точечные диаграммы зависимости ежедневных значений , и от внутридневной волатильности (EURUSD 2004-2008):

Несложно видеть, что и существенно лучше связаны с , чем . Переход от амплитуд "" к модифицированным амплитудам "" даёт определённый выигрыш, однако он, конечно, не столь значителен.
Похожие результаты получаются и для других валют. Наклоны регрессионных прямых и для шести валютных пар имеют следующие значения:

В каждом случае ошибка линейной аппроксимации для была меньше, чем для , и существенно меньше, чем для .
Несмотря на заметный разброс, значения , и близки к своим теоретическим величинам 1.197, 1.596 и 0.798, возникающим при случайном винеровском блуждании. Тем не менее, необходимо помнить, что, например, отношение справедливо только для броуновского блуждания с нормальным распределением доходности лага. На практике это не совсем так, и отношение может быть равно некоторой константе, отличной от , определение значения которой мы обсудим ниже.
Ещё одним признаком значимости модифицированной амплитуды размаха цены являются автокорреляционные коэффициенты, которые будут объектом нашего интереса:
(5)
|
где усреднение проводится по всем наблюдаемым значениям . Для дневных курсов EURUSD (2004-2008) получаются следующие диаграммы автокорреляции как функции параметра сдвига :

Видно, что наиболее высокими являются автокорреляции внутридневной волатильности , затем идут модифицированные амплитуды размаха цены , простой амплитуды , и самые маленькие значения коэффициентов у модуля логарифмической доходности .
Высокие автокорреляции появляются при рассмотрении самых разнообразных финансовых инструментов и являются довольно интригующим фактом [5]. Для сравнения, 1-й автокорреляционный коэффициент доходности курса EURUSD равен , что с учётом двойной статистической ошибки 0.06 (1250 торговых дней) соответствует отсутствию корреляции. Эта непредсказуемость рынка является проявлением его эффективности.
Однако для модулей доходности, и тем более волатильностей, это не так. На основании этого факта строится огромное количество стохастических моделей, претендующих на предсказание будущих значений волатильности. В большинстве своём эти модели носят эмпирический характер, не объясняя причин появления автокорреляций. Одной из наших задач будет предложить подобное объяснение.
Примчания
- Перейти ↑ O.E. Barndorff-Nielsen, N.Shephard, 2000, {Econometric analysis of realised volatility and its use in estimating stochastic volatility models},
- Перейти ↑ B. Biais, L. Glosten, C. Spatt, 2005, {Market microstructure: A surveyof microfoundations, empirical results, and policy implications} Journal of Financial Markets, No.8, pp.217-264.
- Перейти ↑ A.Madhavan, 2000 {Market microstructure: A survey} Journal of Financial Markets, 3, pp.205-258.
- Перейти ↑ F.M. Bandi, J.R. Russell, 2003, {Separating microstructure noise from volatility}
- Перейти ↑ R. Cont, 2001, {Empirical properties of asset returns: stylized facts and statistical issues}, Quantitative Finance Vol.1, pp.223-236.
Измерение волатильности << | Оглавление | >> Эмпирические особенности автокорреляций |
---|