Марковские плотности вероятности
Квазидетерминированное приближение << | Оглавление | >> Уравнение для плотности вероятности |
---|
Вернёмся к винеровскому процессу с нулевым сносом и единичной волатильностью. Так как случайная функция зависит от гауссовой переменной :
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle x=x_0+\varepsilon\cdot \sqrt{t-t_0}\;\;\;\;\;\;\;или\;\;\;\;\;\;\;\varepsilon=(x-x_0)/\sqrt{t-t_0},}
то, воспользовавшись распределением Гаусса (см. стр. \pageref{prob_P_from_f}), можно записать условную плотность вероятности в виде:
(4.1)
|
Чем меньше разница , тем более высоким и узким будет колокол гауссианы, стремясь в пределе к дельта-функции Дирака:
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P(x_0,t_0 \Rightarrow x,t) = \delta (x-x_0)\;\;\;\;\;при\;\;\; t\to t_0. } | (4.2)
|
Она равна бесконечности при и нулю в других точках, так, что интеграл по в окрестности равен единице (см. Приложение М, стр. \pageref{math_delta_dirac_int}). Функции Дирака равна любая условная плотность вероятности при . Действительно, в бесконечно близкий к момент времени отлична от нуля только вероятность в окрестности начального значения .
К дельта-функции Дирака при стремится также условная плотность вероятности Коши:
(4.3)
|
Интеграл от этой функции по равен единице, среднее значение — . Однако моменты второго и более высоких порядков равны бесконечности. Соответственно равна бесконечности волатильность. В результате становятся вероятными очень большие выбросы случайных чисел. Подобные процессы называются процессами со скачками. У колокола распределения существует типичная ширина, пропорциональная . По мере удаления от начального момента времени происходит "расплывание" распределения вероятностей и очень быстрый уход процесса от начального значения . Поэтому в теории диффузных процессов мы не рассматриваем распределение Коши, хотя, как мы увидим чуть ниже, оно является марковским.
Плотность вероятности марковских процессов должна удовлетворять определённым уравнениям. Рассмотрим три последовательных момента времени , в которых принимает значения , и . Совместная плотность вероятности для и равна:
(4.4)
|
где для краткости опущены времена . В (4.4) мы суммируем все возможные реализации "промежуточного" значения . В результате из трехточечной совместной плотности вероятности получается двуточечная. Подставим в левую часть определение условной вероятности, а в правую, с учётом марковости процесса, трёхточечную плотность вероятности (см. (1.42):
Восстанавливая времена, получаем:
(4.5)
|
Это интегральное уравнение Чепмена-Колмогорова. В качестве упражнения ( H) имеет смысл проверить, что этому уравнению удовлетворяет гауссова плотность вероятности (4.1). Второе упражнение ( H) состоит в записи уравнения Чепмена-Колмогорова для характеристических функций, если , и проверке марковости распределения Коши (4.3).
Уравнению Чепмена-Колмогорова должны удовлетворять любые вероятности марковских процессов. Правда в таком виде оно слишком общее, и нам нужны его более конкретные представления. В уравнении (4.5) времена и могут быть удалены друг от друга как угодно далеко. Однако особый интерес представляет ситуация бесконечно близких времён. В результате глобальные свойства определяются из решений локальных дифференциальных уравнений. Так как условная плотность вероятности имеет две пары аргументов, то возможны, по крайней мере, два уравнения относительно и . Из (4.5) в следующем разделе мы получим уравнение относительно , которое называется первым уравнением Колмогорова. Аналогично выводится уравнение Фоккера-Планка, или второе уравнение Колмогорова относительно . Мы найдём его при помощи стохастического дифференциального уравнения. Этот вывод покажет непосредственную связь двух математических аппаратов.
Квазидетерминированное приближение << | Оглавление | >> Уравнение для плотности вероятности |
---|
Стохастический мир - простое введение в стохастические дифференциальные уравнения