Группа SU(2)

Материал из synset
Перейти к: навигация, поиск
Группы O(3) и SO(3) << Оглавление (Последняя версия в: Глава 5) >> Группа Лоренца

Рассмотрим теперь группу . Напомним, что её элементами являются унитарные матрицы с единичным определителем . Группа при преобразованиях вектора с комплексными коэффициентами оставляет неизменным квадрат модуля компонент вектора: . Действительно:

Запишем матрицу в окрестности единичного преобразования:

где коэффициенты матрицы — малые комплексные числа. Условие унитарности приводит к антиэрмитовости матрицы :

Единичность определителя матрицы даёт ещё одно уравнение (равенство нулю следа матрицы) (\,H):

Матрица зависит от вещественных параметров ( элементов, имеющих действительную и мнимую части). Из уравнений следует, что диагональные элементы должны быть чисто мнимыми ( ограничений). Для недиагональных элементов они дают еще действительных уравнений. Плюс одно ограничение получается из . В результате, общее число действительных параметров, определяющих матрицу равно . Специальная унитарная группа имеет 3 параметра.(2) Запишем её матрицу в следующем виде:

Несложно проверить, что эта матрица удовлетворяет обоим полученным выше условиям. Разложение, записанное во втором равенстве, приводит к трём матричным генераторам: . Они удовлетворяют алгебре Ли, похожей на алгебру группы вращения :

Если их умножить на , то получатся матрицы Паули .

Любую матрицу группы можно записать в следующем виде:

Несложно проверить, что эта матрица унитарна: . Введем вместо 2-х комплексных параметров четыре действительных :

(EQN)

Равенство единице определителя выполняется, если , т.е. являются компонентами единичного вектора: . Выделение фактора станет ясным ниже. В такой параметризации матрица выражается через генераторы группы следующим образом:

(EQN)

Бесконечно малые параметры связаны с новыми параметрами: (берём ведущее приближение при разложении синуса и косинуса в ряд Тейлора). Матрицу можно также записать в следующем компактном, но более формальном виде (по сумма):

(EQN)

Действительно, несложно проверить, что квадрат матрицы для единичного вектора равен единичной матрице с обратным знаком (по сумма):

Поэтому:

При разложении в ряд Тейлора экспоненты (), получается ().

Если в качестве бесконечно малых параметров выбрать , то новые генераторы будут удовлетворять алгебре Ли эквивалентной алгебре группы (по сумма):

где

Как мы сейчас увидим, подобное совпадение алгебр неслучайно.

Продемонстрируем связь групп и . При помощи координат радиус-вектора построим эрмитову () матрицу:

Её определитель пропорционален длине радиус-вектора. При помощи унитарных матриц с единичными определителем запишем следующее преобразование:

(EQN)

Оно сохраняет эрмитовость матрицы: , и так как Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \det\mathbf{U}=1} , длина радиус-вектора оказывается инвариантной:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle x'^2+y'^2+z'^2=x^2+y^2+z^2.}

Таким образом, преобразование () осуществляет некоторый поворот декартовой системы координат.

Возникает закономерный вопрос. Если существует связь группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} и обычных вращений и кроме того, алгебры групп Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} совпадают, то не означает ли это, что группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} изоморфны (т.е. их элементы могут быть поставлены во взаимно-однозначное соответствие)? Ответ отрицательный! Дело в том, что одинаковое поведение в малом (в окрестности единичного преобразования), вообще говоря, не означает одинаковости при любых значениях параметров.

Действительно, используя параметризацию (), запишем преобразование () в явном виде для случая Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n_1=n_2=0} , Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n_3=1} .

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \begin{pmatrix} z' & x'-iy' \\ x'+iy' & -z'\\ \end{pmatrix} = \begin{pmatrix} c+\imath s & 0\\ 0 & c-\imath s \\ \end{pmatrix} \begin{pmatrix} z & x-iy \\ x+iy & -z\\ \end{pmatrix} \begin{pmatrix} c-\imath s & 0 \\ 0 & c+\imath s \\ \end{pmatrix},}

где Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c=\cos(\phi/2)} , Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle s=\sin(\phi/2)} . Перемножая матрицы, имеем:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle x'+iy' = (\cos\phi -\imath\sin\phi)(x+\imath y),\;\;\;\;\;\;z'=z}

Сравнивая действительные и мнимые части, окончательно получаем:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \begin{pmatrix} x' \\ y'\\ z' \end{pmatrix} = \begin{pmatrix} \;\cos\phi & \sin\phi & 0\\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y\\ z \end{pmatrix}.}

Таким образом унитарное преобразование с параметрами Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{n}=\{0,0,1\}} и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \phi} соответствует повороту Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{R}_z} в 3-мерном пространстве вокруг оси Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle z} на угол Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \phi} . Если бы мы выбрали Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{n}=\{1,0,0\}} , то получился бы поворот вокруг оси Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle x} , а при Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{n}=\{0,1,0\}} - вокруг Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle y} .

Теперь заметим, что в группе Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} параметр Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \phi} пробегает значения от 0 до Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle 4\pi} (см. множитель Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle 1/2} в ()), определяя различные матрицы. В тоже время в группе Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} интервалы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle 0\leqslant \phi<2\pi} и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle 2\pi\leqslant \phi<4\pi} приводят к одним и тем же матрицам. Поэтому одной матрице Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} соответствует две матрицы группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} и, следовательно, преобразование () осуществляет гомоморфное отображение Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} в Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} .

Если бы мы отказались от условия Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \det\mathbf{U}=1} , вместо группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} получилась бы группа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{U}(2)} . Её матрицы отличаются дополнительным фазовым множителем с вещественным параметром "Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Phi} ":

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{U} = e^{-\imath \Phi} \begin{pmatrix} a & b \\ -b^* & a^*\\ \end{pmatrix},\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;|\det\mathbf{U}|=|a|^2+|b|^2 =1.}

Эта матрица по прежнему унитарна Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{U}^+\mathbf{U}=\mathbf{1}} , но её определитель не равен единице, хотя и имеет единичный модуль Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle |\mathbf{U}|=1} , что следует из условия унитарности.

Фазовый множитель Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle e^{-\imath \Phi}} можно рассматривать как унитарную матрицу из одного комплексного элемента. Эта "матрица" действует на единственное комплексное число: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle z'=e^{-\imath \Phi}z.} Поэтому это группа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{U}(1)} . Если записать Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle z=x+\imath y} и по теореме Эйлера Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle e^{-\imath \Phi}=\cos\Phi -\imath \sin\Phi} , то преобразование для Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle z} оказывается полностью эквивалентным поворотам в плоскости. Таким образом, группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{U}(1)} и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(2)} изоморфны. В свою очередь, группа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{U}(2)} является прямым произведением Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{U}(2)=\mathbf{U}(1)\times\mathbf{SU}(2)} .

Очевидно, что группа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{U}(1)} абелева. В тоже время группа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} , как и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} является неабелевой.

Группа симметрий Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} встречается в физике элементарных частиц при рассмотрении спина и изоспина. Следующая по размерности специальная унитарная группа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(3)} лежит в основе одного из фундаментальных взаимодействий — квантовой хромодинамики. Эта группа имеет параметров и соответственно 8 генераторов, которые являются матрицами 3x3. Эти матрицы строятся аналогично группе Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} . Матрица "отклонения от единичной" со свойствами Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{A}^+=-\mathbf{A}} и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathrm{Tr}\,\mathbf{A}=0} может быть записана следующим образом (выделена мнимая единица!):

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{A} = \imath \begin{pmatrix} a_3+a_8 & a_1-\imath a_2 & a_4-\imath a_5 \\ a_1+\imath a_2 & a_8-a_3 & a_6-\imath a_7 \\ a_4+\imath a_5 & a_6+\imath a_7 & -2 a_8 \\ \end{pmatrix}.}

Параметризация диагональных элементов произвольна (они чисто мнимые и их сумма равна нулю). Разложение Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{A}=a_1\mathbf{X}_1+...+a_8\mathbf{X}_2=\imath a^i\lambda_i} даёт 8 генераторов Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{X}_i} или т.н. матриц Гелл-Манна (3) (обычно Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \lambda_8} делится на Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \sqrt{3}} , что соответствует переопределению параметра Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle a_8} ).

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \bullet} Существование гомеоморфного отображения группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} на Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} , в силу определения данного на стр.\,\pageref{sec_represatation}, означает, что матрицы группы являются матричным представлением элементов группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} . Аналогично в обратную сторону: все элементы группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} можно изоморфно отобразить в часть матриц Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} (это точное представление).

Алгебры генераторов групп и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} совпадают, хотя имеют различную размерность (матрицы 2x2 и 3x3). Представлением алгебры группы Ли размерности Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} называется множество квадратных матриц Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} x, коммутатор которых совпадает с коммутатором генераторов группы. Не стоит путать размерность представления и размерность группы Ли (равную числу действительных параметров, "перечисляющих" элементы группы). Для одной и той же группы можно построить представления алгебр различной размерности.

Почему интересно изучение представлений, например, группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} ? Эта группа с тремя генераторами Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{X}_1,\mathbf{X}_2,\mathbf{X}_3} является группой матриц Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{R}=e^{\mathbf{X}_kn_k\,\phi}} размера 3x3. С их помощью записывается преобразование компонент 3-вектора Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{r}=\{x,y,z\}} при поворотах системы координат: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle r'_i=R_{ij}r_j} (собственно одним из определений компонент вектора является: "набор 3-х величин, преобразующихся при поворотах при помощи матрицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{R}} "). Пусть теперь найдены матрицы-генераторы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \tilde{\mathbf{X}}_k} другой размерности Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n\neq 3} , имеющие такую же алгебру, как и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{X}_k} . Это означает, что построены матрицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \tilde{\mathbf{R}}=e^{\tilde{\mathbf{X}}_kn_k\,\phi}} преобразования некоторой Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} -компонентной величины Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \{x_1,...,x_n\}} . Таким образом, существуют различные математические объекты, по разному преобразующиеся при вращении системы координат. Часть из них хорошо известна. Например, тензоры Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle a_{ij}} ранга 2 в 3-мерном пространстве имеют 9 компонент. Обычно мы записываем их преобразование как произведение двух векторов: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle a'_{ij}=R_{ik}R_{jl}a_{kl}} . Однако его можно записать и при помощи матрицы 9x9, действующей на столбик, состоящий из 9 компонент тензора.

Замечательно, что существуют более экзотические объекты, несводимые к векторам и тензорам. Например, матрицам 2x2 преобразования группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} соответствуют так называемые 3-спиноры, которые мы подробно изучим в главе . Природа не любит "математической пустоты". Если естественным образом возникают математические конструкции обобщающие, например, векторы, то, обычно, в физике находятся объекты, адекватное описание которых проще всего провести при помощью этих конструкций. Например, спиноры лежат в основе нашего понимания таких фундаментальных частиц как лептоны (к которым относится электрон) и кварки, из которых "состоят" адроны.

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \bullet} Найдем все неприводимые представления алгебры групп Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} . Как мы увидим в дальнейшем, классификация представлений группы Лоренца (к которой относятся преобразования Лоренца), также основана на этой алгебре. Матрицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{X}_i} — антиэрмитовы. Удобно вместо них ввести эрмитовы матрицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_k = -\imath \mathbf{X}_k} , не меняющиеся при эрмитовом сопряжении: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}^+_k=\mathbf{J}_k} . Для них справедлива следующая алгебра:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle [\mathbf{J}_i,\mathbf{J}_j]=\imath\varepsilon_{ijk}\mathbf{J}_k. }
(EQN)

В частности Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle [\mathbf{J}_1,\mathbf{J}_2]=\imath\mathbf{J}_3} . Кроме этого введем ещё две матрицы:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{J}_{+} = \frac{\mathbf{J}_1+\imath \mathbf{J}_2}{\sqrt{2}}, \;\;\;\;\;\;\;\;\;\;\;\;\;\; \mathbf{J}_{-} = \frac{\mathbf{J}_1-\imath \mathbf{J}_2}{\sqrt{2}}.}

При помощи коммутатора () несложно проверить, что

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle [\mathbf{J}_3,\,\mathbf{J}_{\pm}]=\pm\mathbf{J}_{\pm}, \;\;\;\;\;\;\;\;\;\;\;\;[\mathbf{J}_{+},\,\mathbf{J}_{-}]=\mathbf{J}_{3},}

и эрмитово сопряжение меняет местами эти матрицы: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (\mathbf{J}_+)^+=\mathbf{J}_-} .

Рассмотрим уравнение на собственные функции и собственные значения матрицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_3} :

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{J}_3 \Phi_m = m \Phi_m. }
(EQN)

Если представление имеет размерность Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} (матрицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} xНевозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} ), то — это столбик, состоящий их Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} чисел (индекс Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m} нумерует столбики соответствующие различным собственным значениям Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m} , а не компоненты этих столбиков). Для эрмитовой матрицы xНевозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} это уравнение имеет не более Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} решений (они существует, если Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \det(\mathbf{J}_3-m\mathbf{1})=0} , а это степенное уравнение порядка относительно числа Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m} ). Кроме этого, все собственные значения — действительны (стр.\,\pageref{math_eq_egenval}). Найдем их. Умножая коммутатор Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_3\mathbf{J}_{\pm}-\mathbf{J}_{\pm}\mathbf{J}_3=\pm\mathbf{J}_{\pm}} справа на столбик Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Phi_m} , приходим к выводу, что столбик Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_{\pm}\Phi_m} , также является собственным вектором матрицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_{3}} , который соответствует собственному значению Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m\pm 1} :

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{J}_{3}\, (\mathbf{J}_{\pm}\Phi_m) = (m\pm 1)(\mathbf{J}_{\pm}\Phi_m). }
(EQN)

Матрицы называются повышающей (Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_{+}} ) и понижающей (Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_{-}} ). Число собственных значений ограничено значением Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} и бесконечно повышать и понижать собственное значение матрицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_{\pm}} не могут. В частности существует максимальное собственное значение Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m=j} , для которого

(EQN)

Понижая Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m=j} при помощи Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_{-}} , мы также рано или поздно получим ноль, т.е. существует целое число Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle N< n} , такое, что Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (\mathbf{J}_{-})^{N+1} \Phi_j = 0} . При этом собственные значения равны Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m=j} , Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle j-1} , ...., Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle j-N} .

Собственные векторы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Phi_m} унитарной матрицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_3} являются ортогональными и в силу линейности уравнений () могут быть сделаны ортонормированными: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Phi^+_m\Phi_m'=\delta_{mm'}} . С их помощью матрицу можно задать диагональной с элементами:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle (\mathbf{J}_3)_{mm'} = \Phi^+_m\mathbf{J}_3\Phi_m = m\, \delta_{mm'},}

т.е. на её диагонали стоят собственные значения. Беря след от коммутатора Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle [\mathbf{J}_+,\mathbf{J}_-]=\mathbf{J}_3} и учитывая, что для любых матриц Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathrm{Tr}\,\mathbf{A}\mathbf{B})=\mathrm{Tr}\,\mathbf{B}\mathbf{A})} , получаем, что . След — это сумма диагональных элементов, поэтому (арифметическая прогрессия):

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle j+(j-1)+...+(j-N) = \frac{1}{2}\, (2j-N)(N+1) = 0.}

В результате, максимальное собственное значение Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle j=N/2} , т.е. оно может быть только целым или полуцелым (Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle N} — целое число), а собственные значения равны Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m=j,j-1,...,-j} . Например, для Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle j=1/2} и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle j=1} имеем следующие представления матрицы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_3} (нумерация индексов элементов матриц соответствует ):

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{J}_3= \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1\\ \end{pmatrix},\;\;\;\;\;\;\;\;\; \mathbf{J}_3= \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -1\\ \end{pmatrix}.}

Из линейных уравнений () следует, что:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{J}_+ \Phi_m = N_{m+ 1} \Phi_{m+1},\;\;\;\;\;\;\;\;\;\;\mathbf{J}_- \Phi_m = N^*_{m} \Phi_{m-1}, }
(EQN)

где Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle N_{m}} — некоторые числа. Первое соотношение следует из линейности, а второе из первого, так как учитывая и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Phi^+_m\Phi_m=1} (нет суммы по Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m} ), имеем: Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle N_m=(\Phi^+_{m-1}\mathbf{J}_- \Phi_m)^+=\Phi^+_m \mathbf{J}_+ \Phi_{m-1}=N_m} . Найдем коэффициенты :

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{J}_+\mathbf{J}_-\Phi_{m} =([\mathbf{J}_+,\mathbf{J}_-]+\mathbf{J}_-\mathbf{J}_+)\Phi_{m} =(\mathbf{J}_3+\mathbf{J}_-\mathbf{J}_+)\Phi_{m} = \bigl(m+N^{*}_{m+1}N_{m+1}\bigr)\Phi_{m},}

и так как Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_+\mathbf{J}_-\Phi_{m}=N_{m}N^{*}_{m}\Phi_{m}=|N_m|^2\Phi_{m}} , получаем:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |N_m|^2-|N_{m+1}|^2=m.}

Сложив левые части этих соотношений для Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m=j} , Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle j-1} , ...., Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle j-p} (принимая во внимание, что Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle N_{j+1}=0} ):

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |N_j|^2+ (|N_{j-1}|^2-|N_{j}|^2)+(|N_{j-2}|^2-|N_{j-1}|^2)+...+(|N_{j-p}|^2-|N_{j-p+1}|^2),}

получаем Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle |N_{j-p}|^2} . Сумма правых частей Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle j+ (j-1)+...+(j-p)} (арифметическая прогрессия) дает Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (2j-p)(p+1)/2} .

Поэтому, с точностью до произвольного фазового множителя, имеем:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle N_k = \sqrt{\frac{(j+k)(j-k+1)}{2}}.}

Теперь можно записать элементы понижающей и повышающей матриц Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (\mathbf{J}_\pm)_{m'm} = \Phi^+_{m'}\mathbf{J}_\pm\Phi_m:}

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle (\mathbf{J}_+)_{m'm} = N_{m+1}\,\delta_{m',m+1}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;(\mathbf{J}_-)_{m'm} = N_{m}\,\delta_{m',m-1}.}

Элементы этих матриц равны нулю за исключением чисел Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle N_j} , ..., , стоящих над главной диагональю в и под главной диагональю в . Так, для имеем , поэтому для и и , получаем:

что совпадает с матрицами 2x2 генераторов Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \tilde{\mathbf{X}}_k=\imath \mathbf{J_k}} , полученных при рассмотрении группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SU}(2)} . Аналогично, для представления Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle j=1} , имеем , откуда:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{J}_1= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0\\ \end{pmatrix},\;\;\; \mathbf{J}_2= \frac{1}{\imath\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ -1 & 0 & 1\\ 0 & -1 & 0\\ \end{pmatrix},}

что соответствует матрицам 3x3 генераторов Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{X}_k=\imath\mathbf{J}_k} группы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{SO}(3)} , с точностью до преобразования эквивалентности , см. стр.\,\pageref{sec_represatation} (найдите (Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \lessdot} \,H) матрицу Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{S}} ). Аналогично записываются неприводимые представления более высокой размерности. Неприводимость представления следует из того, что число линейно независимых векторов Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Phi_m} равно размерности представления (нет инвариантных подпространств).

В заключение введем матрицу Казимира:

которая коммутирует со всеми генераторами алгебры Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle [\mathbf{J}^2,\,\mathbf{J}_i] = 0,} что проверяется при помощи алгебры матриц Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{J}_i} . Векторы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Phi_m} также являются её собственными векторами. В частности, для максимального Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle m=j} , имеем:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{J}^2\Phi_j = \{[\mathbf{J}_+,\,\mathbf{J}_-]+2\mathbf{J}_-\mathbf{J}_++ (\mathbf{J}_3)^2\}\Phi_j = j(j+1)\Phi_j,}

где учтен второй коммутатор () и ().


Группы O(3) и SO(3) << Оглавление (Последняя версия в: Глава 5) >> Группа Лоренца

Релятивистский мир - лекции по теории относительности, гравитации и космологии