Прецессия Томаса/Прецессия спина и момента импульса — различия между версиями
WikiSysop (обсуждение | вклад) |
WikiSysop (обсуждение | вклад) |
||
Строка 149: | Строка 149: | ||
если спин не ортогонален скорости или ускорению. | если спин не ортогонален скорости или ускорению. | ||
− | + | Отметим также уравнение для ''модифицированного спина'' <math>\textstyle \tilde{\mathbf{S}}=\mathbf{S} M/\mathcal{E}=\mathbf{S}/\gamma</math>, равного чистой разности полного момента импулься и момента импульса центра энергии: | |
− | |||
− | |||
{| width="100%" | {| width="100%" | ||
− | | width="90%" align="center"|<math> | + | | width="90%" align="center"|<math> \frac{d\tilde{\mathbf{S}}}{dt} = \gamma^2 \,[\mathbf{a}\times[\mathbf{v}\times\tilde{\mathbf{S}}]. </math> |
| <div width="10%" align="right" style="color:#0000CC">'''(74)'''</div> | | <div width="10%" align="right" style="color:#0000CC">'''(74)'''</div> | ||
|} | |} | ||
− | + | При равноускоренном движении (27) из состояния покоя, интегрирование уравнения прецессии (69) приводит к следующей зависимости продольной к скорости компоненты спина от времени: | |
− | |||
− | |||
{| width="100%" | {| width="100%" | ||
− | | width="90%" align="center"|<math> \frac{ | + | | width="90%" align="center"|<math> S_x(t) = \frac{S_{x0}}{\sqrt{1-v^2(t)}}, </math> |
| <div width="10%" align="right" style="color:#0000CC">'''(75)'''</div> | | <div width="10%" align="right" style="color:#0000CC">'''(75)'''</div> | ||
|} | |} | ||
− | + | где <math>\textstyle S_{x0}=S_x(0)</math> — начальное значение спина в системе, в которой его суммарный импульс был равен нулю. Это же соотношение следует также из преобразования (64). Таким образом, продольная компонента спина увеличивается при ускорении гироскопа, а поперечная компонента остаётся без изменений. На самом деле зависимость (75) получается не только при равноускоренном движении, но и при любом движении вдоль прямой. | |
+ | |||
Хотя момент импульса и спин в системе, в которой гироскоп покоится, совпадают, при движении гироскопа — это различные величины, имеющие различные уравнения, описывающие прецессию при криволинейном движении гироскопа. Пусть в системе <math>\textstyle K''</math> находится неподвижный, вращающийся гироскоп с моментом импульса <math>\textstyle \mathbf{L}''</math> и с центром энергии в начале координат: <math>\textstyle \mathbf{G}''=0</math>. | Хотя момент импульса и спин в системе, в которой гироскоп покоится, совпадают, при движении гироскопа — это различные величины, имеющие различные уравнения, описывающие прецессию при криволинейном движении гироскопа. Пусть в системе <math>\textstyle K''</math> находится неподвижный, вращающийся гироскоп с моментом импульса <math>\textstyle \mathbf{L}''</math> и с центром энергии в начале координат: <math>\textstyle \mathbf{G}''=0</math>. |
Текущая версия на 17:28, 26 марта 2011
Версия для печати: pdf
Момент импульса и спин << | Оглавление | >> Движение гироскопа по окружности |
---|
Введём три системы отсчёта , и . Пусть скорость системы относительно равна , а скорость системы относительно равна . Соответственно, скорость относительно равна .

Рисунок 13. Два вращающихся гироскопа, неподвижные относительно систем и
Эти скорости связаны при помощи преобразования (20):
(57)
|
Так как мало, разложим в ряд знаменатель:
(58)
|
где учтено тождество (8). Умножая левую и правую части на , имеем:
(59)
|
При помощи этого соотношения можно обратить выражение (58):
(60)
|
Рассмотрим прецессию (изменение величины и ориентации) спина системы. Последующие рассуждения справедливы для любого 4-вектора , ортогонального в 4-пространстве к 4-скорости :
(61)
|
Из этого соотношения следует, что . Запишем преобразования для 3-вектора спина (заменяя в (7) и ):
(62)
|
Обратное преобразование получается заменой скорости :
(63)
|
так как в любой системе отсчёта .
Если гироскоп неподвижен () относительно системы , то:
(64)
|
Обратное преобразование получается при помощи тождества (8) из соотношения (62) после подстановки :
(65)
|
Применим преобразование (64) между ИСО и . Пусть в системе находится неподвижный (но вращающийся) гироскоп со спином . В этом случае в преобразовании (64) необходимо добавить всем величинам штрих и заменить . В результате в первом приближении по спин остаётся в системе без изменений:
(66)
|
Рассмотрим теперь "точно такой же" гироскоп, неподвижный в системе со спином (рис.13). Когда начала систем и совпадают, аналогично стержням из раздела , "совпадают" и гороскопы. Поэтому будем считать, что гироскоп системы получается при изменении на скорости гироскопа системы . Спин гироскопа в соответствии с (63) и (66) относительно равен:
(67)
|
Это значение спина гироскопа в момент времени после изменения им скорости на относительно системы . Вычитая из этого выражение значение спина (64) в момент времени , получаем:
(68)
|
где во втором равенстве , при помощи (60), выражено через , а вместо подставлено выражение (65). Вводя вектор 3-мерного ускорения , окончательно получаем:
(69)
|
Если ускорение остаётся перпендикулярным вектору спина (), то спин при таком движении не изменяется. В остальных случаях при ускоренном движении происходит изменение спина. Обратим внимание на то, что уравнение (69) отличается от уравнения (25), описывающего поворот "жёсткого" стержня при криволинейном движении. Поэтому повороты стержня и спина различны.
Уравнению (69) можно придать ковариантную форму:
(70)
|
где — 4-скорость, а — 4-ускорение:
(71)
|
и — собственное время системы .
Дифференциальное уравнение (70) называется уравнением переноса Ферми. Оно может быть получено [1] в предположении, что изменение 4-вектора спина при изменении скорости системы отсчёта пропорционально 4-скорости . При таком переносе, в силу , остаётся без изменений квадрат 4-вектора спина:
(72)
|
хотя квадрат 3-вектора спина изменяется:
(73)
|
если спин не ортогонален скорости или ускорению. Отметим также уравнение для модифицированного спина , равного чистой разности полного момента импулься и момента импульса центра энергии:
(74)
|
При равноускоренном движении (27) из состояния покоя, интегрирование уравнения прецессии (69) приводит к следующей зависимости продольной к скорости компоненты спина от времени:
(75)
|
где — начальное значение спина в системе, в которой его суммарный импульс был равен нулю. Это же соотношение следует также из преобразования (64). Таким образом, продольная компонента спина увеличивается при ускорении гироскопа, а поперечная компонента остаётся без изменений. На самом деле зависимость (75) получается не только при равноускоренном движении, но и при любом движении вдоль прямой.
Хотя момент импульса и спин в системе, в которой гироскоп покоится, совпадают, при движении гироскопа — это различные величины, имеющие различные уравнения, описывающие прецессию при криволинейном движении гироскопа. Пусть в системе находится неподвижный, вращающийся гироскоп с моментом импульса и с центром энергии в начале координат: .
Записав
преобразования (49), (50) между системами и с , в первом порядке малости по , имеем:
(76)
|
Рассмотрим теперь точно такой же гироскоп с моментом , центр энергии которого расположен в начале системы (). Когда начала систем и совпадают, "совпадают" и гироскопы. Будем считать, что гироскоп системы получается при изменении на скорости гироскопа системы . При этом момент импульса не изменяется, однако сдвигается центр энергии гироскопа.
Найдём, как изменение поступательной скорости гироскопа выглядит с точки зрения неподвижных наблюдателей в . Гироскоп имеет момент импульса:
(77)
|
где учтено (49) и (76), а гироскоп :
(78)
|
Разница этих двух выражений даёт изменение момента импульса при изменении скорости гироскопа на .
Считая, что (78) соответствует моменту времени , а (77) — бесконечно близкому моменту , имеем:
(79)
|
Учтём инвариантность , уравнение (59) и подставим из (78). Выражая при помощи (60) скорость через и вводя ускорение , получаем:
(80)
|
Это уравнение описывает изменение момента импульса гироскопа при изменении им скорости. Если скорость и ускорение перпендикулярны (), например, при движении по окружности, уравнение (80) совпадает с уравнением (25) для ускоренного стержня.
Примчания
- Перейти ↑ Вейнберг С. — "Гравитация и космология", М.:Мир (1975)
Момент импульса и спин << | Оглавление | >> Движение гироскопа по окружности |
---|