Стохастический осциллятор — различия между версиями
WikiSysop (обсуждение | вклад) |
WikiSysop (обсуждение | вклад) |
||
Строка 49: | Строка 49: | ||
{| width="100%" | {| width="100%" | ||
| width="90%" align="center"|<math> \left\{ \begin{array}{l} \left\langle x\right\rangle = \left( x_0\,\cos \omega t + \frac{p_0+\lambda x_0}{\omega}\,\sin \omega t\right)\, e^{-\lambda t}\\ \left\langle p\right\rangle = \left( p_0\,\cos \omega t - \frac{x_0+\lambda p_0}{\omega}\,\sin \omega t\right)\, e^{-\lambda t}, \end{array} \right. </math> | | width="90%" align="center"|<math> \left\{ \begin{array}{l} \left\langle x\right\rangle = \left( x_0\,\cos \omega t + \frac{p_0+\lambda x_0}{\omega}\,\sin \omega t\right)\, e^{-\lambda t}\\ \left\langle p\right\rangle = \left( p_0\,\cos \omega t - \frac{x_0+\lambda p_0}{\omega}\,\sin \omega t\right)\, e^{-\lambda t}, \end{array} \right. </math> | ||
− | | <div width="10%" align="right" style="color:#0000CC">'''( | + | | <div width="10%" align="right" style="color:#0000CC">'''(7.3)'''</div> |
|} | |} | ||
− | где <math>\textstyle \omega=\sqrt{1-\lambda^2}</math> (мы считаем, что трение мало и <math>\textstyle \lambda<1</math>). При выводе () можно воспользоваться алгоритмом на стр. \pageref{sec_line_n_dim_models} или привести систему к одному дифференциальному уравнению второго порядка (<math>\textstyle \lessdot</math> H). | + | где <math>\textstyle \omega=\sqrt{1-\lambda^2}</math> (мы считаем, что трение мало и <math>\textstyle \lambda<1</math>). При выводе (7.3) можно воспользоваться алгоритмом на стр. \pageref{sec_line_n_dim_models} или привести систему к одному дифференциальному уравнению второго порядка (<math>\textstyle \lessdot</math> H). |
Выбор <math>\textstyle F=x^2,\;p^2,\;xp</math> приводит к системе уравнений для моментов: | Выбор <math>\textstyle F=x^2,\;p^2,\;xp</math> приводит к системе уравнений для моментов: | ||
Строка 58: | Строка 58: | ||
{| width="100%" | {| width="100%" | ||
| width="90%" align="center"|<math> \left\{ \begin{array}{l} \dot{\left\langle x^2\right\rangle } = 2\left\langle xp\right\rangle \\ \dot{\left\langle xp\right\rangle } = \left\langle p^2\right\rangle - \left\langle x^2\right\rangle - 2\lambda \,\left\langle xp\right\rangle \\ \dot{\left\langle p^2\right\rangle } = -2\left\langle xp\right\rangle + \sigma^2_1\left\langle x^2\right\rangle + (\sigma^2_2 - 4\lambda) \,\left\langle p^2\right\rangle + \sigma^2_3.\\ \end{array} \right. </math> | | width="90%" align="center"|<math> \left\{ \begin{array}{l} \dot{\left\langle x^2\right\rangle } = 2\left\langle xp\right\rangle \\ \dot{\left\langle xp\right\rangle } = \left\langle p^2\right\rangle - \left\langle x^2\right\rangle - 2\lambda \,\left\langle xp\right\rangle \\ \dot{\left\langle p^2\right\rangle } = -2\left\langle xp\right\rangle + \sigma^2_1\left\langle x^2\right\rangle + (\sigma^2_2 - 4\lambda) \,\left\langle p^2\right\rangle + \sigma^2_3.\\ \end{array} \right. </math> | ||
− | | <div width="10%" align="right" style="color:#0000CC">'''( | + | | <div width="10%" align="right" style="color:#0000CC">'''(7.4)'''</div> |
|} | |} | ||
Строка 67: | Строка 67: | ||
{| width="100%" | {| width="100%" | ||
| width="90%" align="center"|<math> \left\langle x^2\right\rangle =\left\langle p^2\right\rangle = \frac{\sigma^2_3}{4\lambda -\sigma^2_1-\sigma^2_2},\;\;\;\;\;\;\;\;\;\;\left\langle xp\right\rangle =0. </math> | | width="90%" align="center"|<math> \left\langle x^2\right\rangle =\left\langle p^2\right\rangle = \frac{\sigma^2_3}{4\lambda -\sigma^2_1-\sigma^2_2},\;\;\;\;\;\;\;\;\;\;\left\langle xp\right\rangle =0. </math> | ||
− | | <div width="10%" align="right" style="color:#0000CC">'''( | + | | <div width="10%" align="right" style="color:#0000CC">'''(7.5)'''</div> |
|} | |} | ||
Строка 82: | Строка 82: | ||
:<center><math>E=\frac{x^2+p^2}{2}.</math></center> | :<center><math>E=\frac{x^2+p^2}{2}.</math></center> | ||
− | Из () следует, что её среднее значение удовлетворяет уравнению: | + | Из (7.4) следует, что её среднее значение удовлетворяет уравнению: |
:<center><math>\frac{d}{dt}\left\langle E\right\rangle = \sigma^2 \left\langle E\right\rangle + \frac{\sigma^2_3}{2},</math></center> | :<center><math>\frac{d}{dt}\left\langle E\right\rangle = \sigma^2 \left\langle E\right\rangle + \frac{\sigma^2_3}{2},</math></center> | ||
Строка 100: | Строка 100: | ||
:<center><math>\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & -2\lambda \\ \end{pmatrix}, \;\;\;\;\;\; \mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & \sigma \\ \end{pmatrix}.</math></center> | :<center><math>\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & -2\lambda \\ \end{pmatrix}, \;\;\;\;\;\; \mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & \sigma \\ \end{pmatrix}.</math></center> | ||
− | Чтобы найти <math>\textstyle e^{\mathbf{A}t}</math>, продифференцируем () по <math>\textstyle x_0</math> и <math>\textstyle p_0</math>: | + | Чтобы найти <math>\textstyle e^{\mathbf{A}t}</math>, продифференцируем (7.3) по <math>\textstyle x_0</math> и <math>\textstyle p_0</math>: |
:<center><math>e^{\mathbf{A}t} = \begin{pmatrix} \omega \cos \omega t + \lambda\sin \omega t & \sin \omega t \\ -\sin \omega t & \omega \cos \omega t - \lambda\sin \omega t \\ \end{pmatrix} \cdot \frac{e^{-\lambda t}}{\omega}.</math></center> | :<center><math>e^{\mathbf{A}t} = \begin{pmatrix} \omega \cos \omega t + \lambda\sin \omega t & \sin \omega t \\ -\sin \omega t & \omega \cos \omega t - \lambda\sin \omega t \\ \end{pmatrix} \cdot \frac{e^{-\lambda t}}{\omega}.</math></center> | ||
− | При помощи этой матрицы, интегрируя (), | + | При помощи этой матрицы, интегрируя (6.28), ([[Линейные многомерные модели]]), можно найти дисперсию координаты и импульса: |
:<center><math>\left\{ \begin{matrix} D_{xx}(t) \\ D_{pp}(t) \\ \end{matrix} \right\} = \frac{\sigma^2}{4\lambda} - \frac{\sigma^2}{4\lambda\omega^2} \, \bigl[1-\lambda^2 \cos(2\omega t) \pm \lambda \omega \sin(2\omega t)\bigr]\,e^{-2\lambda t}.</math></center> | :<center><math>\left\{ \begin{matrix} D_{xx}(t) \\ D_{pp}(t) \\ \end{matrix} \right\} = \frac{\sigma^2}{4\lambda} - \frac{\sigma^2}{4\lambda\omega^2} \, \bigl[1-\lambda^2 \cos(2\omega t) \pm \lambda \omega \sin(2\omega t)\bigr]\,e^{-2\lambda t}.</math></center> | ||
Строка 112: | Строка 112: | ||
:<center><math>D_{xp}(t) = \frac{\sigma^2 }{2\omega^2}\, \sin^2(\omega t)\,e^{-2\lambda t}</math></center> | :<center><math>D_{xp}(t) = \frac{\sigma^2 }{2\omega^2}\, \sin^2(\omega t)\,e^{-2\lambda t}</math></center> | ||
− | и стремится к нулю при <math>\textstyle t\to\infty</math> и <math>\textstyle \lambda>0</math>. В результате, в стационарном режиме (<math>\textstyle t\to\infty</math>) матрица дисперсий диагональна (), поэтому автоковариационная матрица <math>\textstyle \mathrm{cov}\,\tau)</math> равна <math>\textstyle e^{\mathbf{A}^T|\tau|}</math> с множителем <math>\textstyle \sigma^2/4\lambda</math>. | + | и стремится к нулю при <math>\textstyle t\to\infty</math> и <math>\textstyle \lambda>0</math>. В результате, в стационарном режиме (<math>\textstyle t\to\infty</math>) матрица дисперсий диагональна (7.5), поэтому автоковариационная матрица <math>\textstyle \mathrm{cov}\,\tau)</math> равна <math>\textstyle e^{\mathbf{A}^T|\tau|}</math> с множителем <math>\textstyle \sigma^2/4\lambda</math>. |
При отсутствии трения <math>\textstyle \lambda=0</math>, <math>\textstyle \omega=1</math>: | При отсутствии трения <math>\textstyle \lambda=0</math>, <math>\textstyle \omega=1</math>: |
Версия 21:15, 6 марта 2010
Теория броуновского движения << | Оглавление | >> Дрожание земной оси |
---|
Множество механических, электромагнитных, биологических и социальных систем описываются осцилляторными уравнениями. Для определённости мы рассмотрим одномерный механический осциллятор массой , подверженный трению и внешним стохастическим воздействиям. Определение импульса и закон Ньютона в этом случае имеют вид:

где сила состоит из трёх компонент:
Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle F = - \underbrace{(k + {\rm Noise}_1)\cdot x}_{сила\;упругости} \;-\; \underbrace{(2\lambda + {\rm Noise}_2)\cdot p}_{сила\;трения} \;+\; \underbrace{{\rm Noise}_3.}_{внешняя\;сила}}
Сила упругости пропорциональна величине отклонения от положения равновесия . Мы будем считать, что коэффициент упругости испытывает стохастические изменения, которые символически обозначены членом Noise. Знак минус перед упругой силой означает, что она стремится вернуть частицу назад, к положению равновесия. Сила сопротивления тем больше, чем больше скорость (импульс) частицы. Так происходит при движении в среде (воздух, вода). Сопротивление стремится остановить движение. Будем также предполагать, что коэффициент сопротивления подвержен стохастическим воздействиям Noise. Наконец, третья составляющая силы — это шум Noise, который может быть, например, внешними случайными толчками.
Все три стохастические компоненты, в зависимости от ситуации, можно рассматривать как в качестве независимых, так и в качестве зависимых случайных процессов. В общем случае между ними существуют некоторые корреляционные коэффициенты. Мы рассмотрим случай независимых стохастических воздействий, считая, что они имеют различную причину, и поэтому нескоррелированы.
Будем работать в системе единиц, для которой , ( C). Стохастические уравнения движения в этом случае имеют вид:
где — волатильность коэффициента упругости, — силы трения, а — внешнего шума. Винеровские переменные , и представляют собой изменения трёх независимых процессов.
Рассмотрим сначала общий случай, записав систему:
со следующими векторами и матрицами:
Для функции координат и импульсов воспользуемся динамическим уравнением для средних (стр. \pageref{aver_F_n_dim}):
где — вторая производная по , — производная по и , и т.д. Подставляя матрицы и перемножая их, получаем ( H):
Выбор и приводит к системе уравнений, совпадающих с детерминированными (снос линеен!):
Её решение с начальными условиями , имеет вид:
(7.3)
|
где (мы считаем, что трение мало и ). При выводе (7.3) можно воспользоваться алгоритмом на стр. \pageref{sec_line_n_dim_models} или привести систему к одному дифференциальному уравнению второго порядка ( H).
Выбор приводит к системе уравнений для моментов:
(7.4)
|
Эта неоднородная линейная система обыкновенных дифференциальных уравнений легко решается. Однако, так как уравнение для собственных значений оказывается кубическим, выражения получаются достаточно громоздкими. Ниже мы рассмотрим частные случаи этой системы.
Если , система имеет стационарный режим при , в котором:
(7.5)
|
При средние стремятся к нулю, и матрица дисперсии оказывается диагональной:
Каждая разновидность шума увеличивает дисперсии, но по-разному. Трение играет стабилизирующую роль, уменьшая .
Заметим, что динамика при продолжается только, если существует внешний шум (). Если , стационарный режим также существует, но он вырождается в полное затухание колебаний, и . Причина подобного поведения та же, что и у логистического уравнения (стр. \pageref{why_logistic_stop}).
Пусть детерминированной составляющей трения нет , а флуктуации упругости и трения имеют одинаковые амплитуды . Введём энергию гармонического осциллятора:
Из (7.4) следует, что её среднее значение удовлетворяет уравнению:
а, следовательно, возрастает со временем:
Если стохастическое воздействие обусловлено только внешними толчками (), то рост не такой быстрый и аналогичен винеровскому увеличению неопределённости . Так же, как и броуновская частица под внешним воздействием в среднем удаляется от начального положения, так и квадрат амплитуды осциллятора при в среднем увеличивается.
Если существуют только внешние толчки (), то стохастика имеет постоянную волатильность :
Подобную систему мы рассматривали в шестой главе (стр. \pageref{stochastic_oscillator}). Она обладает точным решением, которое выражается через две независимые гауссовы переменные. Воспользуемся общим алгоритмом решения системы линейных уравнений (см. стр. \pageref{sec_line_n_dim_models}) с матрицами:
Чтобы найти , продифференцируем (7.3) по и :
При помощи этой матрицы, интегрируя (6.28), (Линейные многомерные модели), можно найти дисперсию координаты и импульса:
Верхний знак соответствует дисперсии для : , а нижний — для : . Дисперсия произведения динамических переменных имеет вид:
и стремится к нулю при и . В результате, в стационарном режиме () матрица дисперсий диагональна (7.5), поэтому автоковариационная матрица равна с множителем .
При отсутствии трения , :
и, как мы видели выше, стационарного режима нет. Дисперсии по и растут во времени, совершая периодические колебания. Автоковариационная матрица получается перемножением и .
Теория броуновского движения << | Оглавление | >> Дрожание земной оси |
---|
Стохастический мир - простое введение в стохастические дифференциальные уравнения