Квадратичный функционал — различия между версиями
WikiSysop (обсуждение | вклад) |
WikiSysop (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
|} | |} | ||
---- | ---- | ||
− | |||
<math>\textstyle \bullet</math> Рассмотрим процесс, равный интегралу по времени от квадрата винеровской траектории: | <math>\textstyle \bullet</math> Рассмотрим процесс, равный интегралу по времени от квадрата винеровской траектории: | ||
Строка 179: | Строка 178: | ||
решение которых можно записать в виде: \begin{eqnarray*} F(x,y)&=&[f_1\,\cos(y\sqrt{\lambda})+f_2\sin(y\sqrt{\lambda})]\,\cos(x\sqrt{\lambda})\\ &+&[f_3\,\cos(y\sqrt{\lambda})+f_4\sin(y\sqrt{\lambda})]\,\sin(x\sqrt{\lambda}), \end{eqnarray*} где <math>\textstyle f_i</math> — некоторые константы, зависящие от <math>\textstyle \lambda</math>. | решение которых можно записать в виде: \begin{eqnarray*} F(x,y)&=&[f_1\,\cos(y\sqrt{\lambda})+f_2\sin(y\sqrt{\lambda})]\,\cos(x\sqrt{\lambda})\\ &+&[f_3\,\cos(y\sqrt{\lambda})+f_4\sin(y\sqrt{\lambda})]\,\sin(x\sqrt{\lambda}), \end{eqnarray*} где <math>\textstyle f_i</math> — некоторые константы, зависящие от <math>\textstyle \lambda</math>. | ||
− | Для того, чтобы их найти, необходимо подставить решение, например, в первое интегральное уравнение (). Оно обратится в тождество при любых <math>\textstyle x<y</math>, если <math>\textstyle f_1=f_2=0</math>, <math>\textstyle f_3=1/\sqrt{\lambda}</math>, <math>\textstyle f_4=\tg(\sqrt{\lambda})\cdot f_3</math>. Следовательно, выражение для матрицы <math>\textstyle F_{xy}</math> при <math>\textstyle x \leqslant y</math> имеет вид: | + | Для того, чтобы их найти, необходимо подставить решение, например, в первое интегральное уравнение (). Оно обратится в тождество при любых <math>\textstyle x<y</math>, если <math>\textstyle f_1=f_2=0</math>, <math>\textstyle f_3=1/\sqrt{\lambda}</math>, <math>\textstyle f_4=\mathrm{tg}(\sqrt{\lambda})\cdot f_3</math>. Следовательно, выражение для матрицы <math>\textstyle F_{xy}</math> при <math>\textstyle x \leqslant y</math> имеет вид: |
− | :<center><math>F_{xy} = \frac{\sin(x\sqrt{\lambda})}{\sqrt{\lambda}}\, \left[ \cos(y\sqrt{\lambda})+\tg(\sqrt{\lambda})\,\sin(y\sqrt{\lambda})\right].</math></center> | + | :<center><math>F_{xy} = \frac{\sin(x\sqrt{\lambda})}{\sqrt{\lambda}}\, \left[ \cos(y\sqrt{\lambda})+\mathrm{tg}(\sqrt{\lambda})\,\sin(y\sqrt{\lambda})\right].</math></center> |
− | Теперь несложно найти множители в показателе экспоненты (): \begin{eqnarray*} \frac{'''z'''\,'''F'''\,'''z'''}{n} &=& F_{11} = \frac{\tg(\sqrt{\lambda} )}{\sqrt{\lambda}},\\ \frac{'''u'''\,'''F'''\,'''z'''}{n^2} &=& \int\limits^1_0 F_{x1}\, dx = \frac{1}{\lambda}\left[\frac{1}{\cos(\sqrt{\lambda})-1}\right],\\ \frac{'''u'''\,'''F'''\,'''u'''}{n^3} &=& 2\int\limits^1_0 \int\limits^y_0F_{xy}\, dx\, dy = \frac{1}{\lambda}\left[\frac{\tg(\sqrt{\lambda})}{\sqrt{\lambda}}-1\right]. \end{eqnarray*} Поэтому окончательно производящая функция равна: | + | Теперь несложно найти множители в показателе экспоненты (): \begin{eqnarray*} \frac{'''z'''\,'''F'''\,'''z'''}{n} &=& F_{11} = \frac{\mathrm{tg}(\sqrt{\lambda} )}{\sqrt{\lambda}},\\ \frac{'''u'''\,'''F'''\,'''z'''}{n^2} &=& \int\limits^1_0 F_{x1}\, dx = \frac{1}{\lambda}\left[\frac{1}{\cos(\sqrt{\lambda})-1}\right],\\ \frac{'''u'''\,'''F'''\,'''u'''}{n^3} &=& 2\int\limits^1_0 \int\limits^y_0F_{xy}\, dx\, dy = \frac{1}{\lambda}\left[\frac{\mathrm{tg}(\sqrt{\lambda})}{\sqrt{\lambda}}-1\right]. \end{eqnarray*} Поэтому окончательно производящая функция равна: |
:<center><math>\left\langle e^{q\,W_t+k\,S_t+p\,U_t}\right\rangle = \frac{e^{M/2}}{\sqrt{\cos(\sqrt{\lambda})}},</math></center> | :<center><math>\left\langle e^{q\,W_t+k\,S_t+p\,U_t}\right\rangle = \frac{e^{M/2}}{\sqrt{\cos(\sqrt{\lambda})}},</math></center> | ||
Строка 189: | Строка 188: | ||
где <math>\textstyle \lambda=2p\,t^2</math>, и | где <math>\textstyle \lambda=2p\,t^2</math>, и | ||
− | :<center><math>M = q^2\,t\cdot\frac{\tg(\sqrt{\lambda})}{\sqrt{\lambda}} +\frac{k^2\,t^3}{3}\cdot\frac{3}{\lambda}\left[\frac{\tg(\sqrt{\lambda})}{\sqrt{\lambda}}-1\right] + kq\,t^2\cdot \frac{2}{\lambda}\left[\frac{1}{\cos(\sqrt{\lambda})}-1 \right].</math></center> | + | :<center><math>M = q^2\,t\cdot\frac{\mathrm{tg}(\sqrt{\lambda})}{\sqrt{\lambda}} +\frac{k^2\,t^3}{3}\cdot\frac{3}{\lambda}\left[\frac{\mathrm{tg}(\sqrt{\lambda})}{\sqrt{\lambda}}-1\right] + kq\,t^2\cdot \frac{2}{\lambda}\left[\frac{1}{\cos(\sqrt{\lambda})}-1 \right].</math></center> |
Заметим, что, если <math>\textstyle \lambda=0</math>, то | Заметим, что, если <math>\textstyle \lambda=0</math>, то | ||
Строка 206: | Строка 205: | ||
Другие соотношения можно найти в разделах <math>\textstyle \mathbf{R}_{}</math>, <math>\textstyle \mathbf{R}_{}</math>, <math>\textstyle \mathbf{R}_{}</math> "Стохастического справочника" (стр. \pageref{r_base_int_process}). | Другие соотношения можно найти в разделах <math>\textstyle \mathbf{R}_{}</math>, <math>\textstyle \mathbf{R}_{}</math>, <math>\textstyle \mathbf{R}_{}</math> "Стохастического справочника" (стр. \pageref{r_base_int_process}). | ||
+ | |||
---- | ---- |
Версия 19:24, 21 февраля 2010
Интегралы Ито << | Оглавление | >> Интегрирование стохастических уравнений |
---|
Рассмотрим процесс, равный интегралу по времени от квадрата винеровской траектории:
где мы сразу положили . Введём гауссовы случайные величины:
Их матрица дисперсий имеет единичный определитель . Действительно, вычитая из всех строк первую строку, затем из всех лежащих ниже второй — вторую строку, и т.д., мы приходим к треугольной матрице с единичными элементами. Например, для имеем:
Матрица определяет плотность вероятности величин (, стр. \pageref{n_dim_gauss_distribution_sec}):
Для скалярной случайной величины :
найдём производящую функцию:
где матрица размерности x равна:
(EQN)
|
Умножая обе части () на и учитывая, что определитель произведения равен произведению определителей, а , получаем:
Нам необходимо найти предел этого выражения при .
Для матрицы размерности x с элементами докажем следующее соотношение:
Несложно проверить, что обратная к матрица является ленточной:
Поэтому , где , или
Вычисление определителя по первой колонке даёт следующее рекуррентное уравнение:
Решим его сначала в более общем случае: . Перенося влево и , получим две геометрические прогрессии:
Если , то можно исключить и найти :
В нашем случае и являются корнями уравнения , для которых можно сразу взять ведущий порядок малости по :
Воспользовавшись предельным определением экспоненты, получаем:
что и требовалось доказать.
Таким образом, интегралу от квадрата винеровской траектории
соответствует производящая функция Камерона-Мартина:
и, следовательно, следующие средние значения:
Процесс , как и (стр. \pageref{sec_sqr_W}), в момент времени выражается через скалярную случайную величину , однако, она имеет не гауссово распределение:
тогда как , где .
Зная производящие функции для и , можно вычислить некоторые стохастические интегралы по . При помощи интегральной версии леммы Ито (), стр. \pageref{lemma_Ito_int_simple}, в качестве упражнения стоит проверить, что:
Аналогично, при помощи общей интегральной леммы Ито с функцией, зависящей от времени, имеем:
Таким образом, изучив статистические свойства трех базовых процессов , и , мы можем вычислять различные средние для достаточно широкого класса случайных процессов, выражаемых через стохастические интегралы.
Процесс имеет негауссово распределение, однако производящая функция для него была вычислена при помощи -мерного интеграла Гаусса. Для интегралов по времени от , ,... получить подобные простые выражения уже не просто.
Найдём совместную производящую функцию для винеровского процесса и двух интегралов от него по времени:
Переходя к скоррелированным гауссовым величинам , имеем:
Матрица и вектор равны:
где — единичный вектор, а — вектор, у которого отлична от нуля только последняя компонента. Проведя интегрирование, получаем:
где — обратная к матрица. Значение детерминанта нам известно, осталось вычислить показатель экспоненты. Запишем его при помощи векторов и
(EQN)
|
где мы воспользовались тем, что матрица , как и , симметрична. Первое выражение в круглых скобках равно сумме всех элементов , второе — сумме элементов последней колонки, а третье - элементу в нижнем правом углу матрицы.
Так как матрица является обратной к , справедливы следующие соотношения:
где . Умножая их на , мы приходим к двум матричным уравнениям размерности x:
(EQN)
|
Нас интересует их решение при больших .
Удобно сразу перейти к пределу , заменив дискретные индексы на вещественные переменные , , изменяющиеся от нуля до единицы. В этом случае матрицы становятся функциями двух переменных, а суммы превращаются в интегралы:
Например, вычисление следа матрицы в дискретном и непрерывном вариантах выглядит следующим образом:
Аналогично определяем . В результате матричные уравнения () превращаются в интегральные:
(EQN)
|
Пусть для элемент равен функции . В силу симметрии, если , то . Разбивая пределы интегрирования на три отрезка из (), при получаем следующие уравнения:
(EQN)
|
(EQN)
|
Если взять вторую производную по от первого уравнения и по от второго, получатся два осцилляторных уравнения:
решение которых можно записать в виде: \begin{eqnarray*} F(x,y)&=&[f_1\,\cos(y\sqrt{\lambda})+f_2\sin(y\sqrt{\lambda})]\,\cos(x\sqrt{\lambda})\\ &+&[f_3\,\cos(y\sqrt{\lambda})+f_4\sin(y\sqrt{\lambda})]\,\sin(x\sqrt{\lambda}), \end{eqnarray*} где — некоторые константы, зависящие от .
Для того, чтобы их найти, необходимо подставить решение, например, в первое интегральное уравнение (). Оно обратится в тождество при любых , если , , . Следовательно, выражение для матрицы при имеет вид:
Теперь несложно найти множители в показателе экспоненты (): \begin{eqnarray*} \frac{z\,F\,z}{n} &=& F_{11} = \frac{\mathrm{tg}(\sqrt{\lambda} )}{\sqrt{\lambda}},\\ \frac{u\,F\,z}{n^2} &=& \int\limits^1_0 F_{x1}\, dx = \frac{1}{\lambda}\left[\frac{1}{\cos(\sqrt{\lambda})-1}\right],\\ \frac{u\,F\,u}{n^3} &=& 2\int\limits^1_0 \int\limits^y_0F_{xy}\, dx\, dy = \frac{1}{\lambda}\left[\frac{\mathrm{tg}(\sqrt{\lambda})}{\sqrt{\lambda}}-1\right]. \end{eqnarray*} Поэтому окончательно производящая функция равна:
где , и
Заметим, что, если , то
соответствует двум скоррелированным гауссовым случайным величинам.
Приведём значение некоторых средних:
Другие соотношения можно найти в разделах , , "Стохастического справочника" (стр. \pageref{r_base_int_process}).
Интегралы Ито << | Оглавление | >> Интегрирование стохастических уравнений |
---|
Стохастический мир - простое введение в стохастические дифференциальные уравнения