Прецессия Томаса/Преобразования Лоренца — различия между версиями
WikiSysop (обсуждение | вклад) |
WikiSysop (обсуждение | вклад) |
||
(не показаны 4 промежуточные версии этого же участника) | |||
Строка 1: | Строка 1: | ||
+ | Версия для печати: [http://synset.com/pdf/thomas/thomas_ru.pdf pdf] | ||
+ | ---- | ||
{| width="100%" | {| width="100%" | ||
| width="40%"|[[Прецессия Томаса/Введение|Введение]] << | | width="40%"|[[Прецессия Томаса/Введение|Введение]] << | ||
Строка 6: | Строка 8: | ||
---- | ---- | ||
− | Пусть начало инерциальной системы отсчёта <math>\textstyle K'</math> движется относительно "неподвижной" системы <math>\textstyle K</math> со скоростью <math>\textstyle {\mathbf v}</math>. Время и координаты некоторого события, наблюдаемого из системы <math>\textstyle K</math>, обозначим как <math>\textstyle (t,\mathbf{r})</math>. Это же событие в системе <math>\textstyle K'</math> имеет время и координаты со штрихами <math>\textstyle (t',\mathbf{r}')</math>. Рассмотрим сначала одномерное движение вдоль оси <math>\textstyle x</math> со скоростью <math>\textstyle v</math>. Будем считать, что в момент времени <math>\textstyle t=t'=0</math> начала систем отсчёта совпадают: <math>\textstyle x=x'=0</math>. Чтобы связь между наблюдениями события имела смысл, необходимо согласовать единицы измерения длины и времени в обоих системах отсчёта. ''Единицы длины'' можно согласовать при помощи "сравнения линеек" в перпендикулярном к относительной скорости направлении. Такими "линейками" может быть, например, расстояние между траекториями двух частиц, движущихся параллельно оси <math>\textstyle x</math>. | + | Пусть начало инерциальной системы отсчёта <math>\textstyle K'</math> движется относительно "неподвижной" системы <math>\textstyle K</math> со скоростью <math>\textstyle {\mathbf v}</math>. Время и координаты некоторого события, наблюдаемого из системы <math>\textstyle K</math>, обозначим как <math>\textstyle (t,\mathbf{r})</math>. Это же событие в системе <math>\textstyle K'</math> имеет время и координаты со штрихами <math>\textstyle (t',\mathbf{r}')</math>. Рассмотрим сначала одномерное движение вдоль оси <math>\textstyle x</math> со скоростью <math>\textstyle v</math>. Будем считать, что в момент времени <math>\textstyle t=t'=0</math> начала систем отсчёта совпадают: <math>\textstyle x=x'=0</math>. Чтобы связь между наблюдениями события имела смысл, необходимо |
+ | [[Неподвижные наблюдатели|согласовать единицы измерения]] длины и времени в обоих системах отсчёта. ''Единицы длины'' можно согласовать при помощи "сравнения линеек" в перпендикулярном к относительной скорости направлении. Такими "линейками" может быть, например, расстояние между траекториями двух частиц, движущихся параллельно оси <math>\textstyle x</math>. | ||
Постулируется, что координаты <math>\textstyle y</math> и <math>\textstyle y'</math> будут одинаковыми в обоих системах отсчёта: <math>\textstyle y'=y</math>. ''Единицы времени'' выбираются в результате соглашения о значении относительной скорости систем отсчёта. В частности, если начало системы <math>\textstyle K'</math> (<math>\textstyle x'=0</math>) имеет уравнение движения <math>\textstyle x=vt</math>, то начало <math>\textstyle K</math> (<math>\textstyle x=0</math>) относительно системы <math>\textstyle K'</math>, движется следующим образом: <math>\textstyle x'=-vt'</math>. После такого согласования единиц измерения, используя аксиоматику Эйнштейна | Постулируется, что координаты <math>\textstyle y</math> и <math>\textstyle y'</math> будут одинаковыми в обоих системах отсчёта: <math>\textstyle y'=y</math>. ''Единицы времени'' выбираются в результате соглашения о значении относительной скорости систем отсчёта. В частности, если начало системы <math>\textstyle K'</math> (<math>\textstyle x'=0</math>) имеет уравнение движения <math>\textstyle x=vt</math>, то начало <math>\textstyle K</math> (<math>\textstyle x=0</math>) относительно системы <math>\textstyle K'</math>, движется следующим образом: <math>\textstyle x'=-vt'</math>. После такого согласования единиц измерения, используя аксиоматику Эйнштейна | ||
Строка 12: | Строка 15: | ||
Einstein A. — "''Zur Elektrodynamik der bewegter Korper''", ''Ann. Phys.'' '''17''' pp.891-921 (1905). | Einstein A. — "''Zur Elektrodynamik der bewegter Korper''", ''Ann. Phys.'' '''17''' pp.891-921 (1905). | ||
</ref> | </ref> | ||
− | или групповой подход | + | или [[Преобразования Лоренца|групповой подход]] |
<ref name="Ignatoskiy1910"> | <ref name="Ignatoskiy1910"> | ||
von Ignatowsky W. A. — "''Einige allgemeine Bemerkungen zum Relativit\"atsprinzip''", Archiv der Mathematik und Physik, 17. p. 1 ff. (1910). Перевод: http://synset.com | von Ignatowsky W. A. — "''Einige allgemeine Bemerkungen zum Relativit\"atsprinzip''", Archiv der Mathematik und Physik, 17. p. 1 ff. (1910). Перевод: http://synset.com | ||
Строка 40: | Строка 43: | ||
<center>[[File:lorenz_3D_2.png]]</center> | <center>[[File:lorenz_3D_2.png]]</center> | ||
− | <blockquote> '''Рисунок 3'''. Согласование единиц измерения двумя системами отсчёта. | + | <blockquote> '''Рисунок 3'''. Согласование единиц измерения двумя системами отсчёта. |
</blockquote> | </blockquote> | ||
Строка 70: | Строка 73: | ||
Пусть наблюдатели в системе <math>\textstyle K</math> одновременно (по своим часам) фиксируют положение осей системы <math>\textstyle K'</math>. В следующем разделе мы покажем, что эти оси (в общем случае) оказываются не только не параллельными к осям системы <math>\textstyle K</math>, но даже и не являются ортогональным базисом (с точки зрения неподвижных наблюдателей). Поэтому "параллельность" координатных осей в преобразованиях Лоренца (7) необходимо понимать только в том смысле, что наблюдатели выполнили описанную выше процедуру согласования единиц измерения и после этого независимо (по компонентам скорости <math>\textstyle \mathbf{v}</math>) задали ориентацию координатных осей. | Пусть наблюдатели в системе <math>\textstyle K</math> одновременно (по своим часам) фиксируют положение осей системы <math>\textstyle K'</math>. В следующем разделе мы покажем, что эти оси (в общем случае) оказываются не только не параллельными к осям системы <math>\textstyle K</math>, но даже и не являются ортогональным базисом (с точки зрения неподвижных наблюдателей). Поэтому "параллельность" координатных осей в преобразованиях Лоренца (7) необходимо понимать только в том смысле, что наблюдатели выполнили описанную выше процедуру согласования единиц измерения и после этого независимо (по компонентам скорости <math>\textstyle \mathbf{v}</math>) задали ориентацию координатных осей. | ||
+ | === Примчания === | ||
+ | <references/> | ||
---- | ---- | ||
{| width="100%" | {| width="100%" |
Текущая версия на 10:27, 14 марта 2011
Версия для печати: pdf
Введение << | Оглавление | >> Лоренцевское сокращение |
---|
Пусть начало инерциальной системы отсчёта движется относительно "неподвижной" системы со скоростью . Время и координаты некоторого события, наблюдаемого из системы , обозначим как . Это же событие в системе имеет время и координаты со штрихами . Рассмотрим сначала одномерное движение вдоль оси со скоростью . Будем считать, что в момент времени начала систем отсчёта совпадают: . Чтобы связь между наблюдениями события имела смысл, необходимо согласовать единицы измерения длины и времени в обоих системах отсчёта. Единицы длины можно согласовать при помощи "сравнения линеек" в перпендикулярном к относительной скорости направлении. Такими "линейками" может быть, например, расстояние между траекториями двух частиц, движущихся параллельно оси .
Постулируется, что координаты и будут одинаковыми в обоих системах отсчёта: . Единицы времени выбираются в результате соглашения о значении относительной скорости систем отсчёта. В частности, если начало системы () имеет уравнение движения , то начало () относительно системы , движется следующим образом: . После такого согласования единиц измерения, используя аксиоматику Эйнштейна [1] или групповой подход [2], [3], [4], можно получить преобразования Лоренца в следующем виде:
(5)
|
где — фактор Лоренца.
При движении вдоль оси координатные оси обоих систем отсчёта предполагаются параллельными друг другу. Обратные преобразования получаются перестановкой "штрихованных" и "нештрихованных" величин местами и заменой .
Пусть теперь относительная скорость двух систем отсчёта направлена произвольным образом. Фиксирование значений компонент вектора (и с обратным знаком для ), означает также выбор определённой ориентации координатных осей в каждой системе отсчета. Пусть наблюдатели в системе при данном выборе координатных осей получают, например, следующие компоненты относительной скорости: . Тогда наблюдатели в системе должны выбрать направление координатных осей таким образом, чтобы относительная скорость для них имела компоненты: . Такая процедура позволяет ориентировать координатные оси систем отсчёта так, чтобы они были в некотором смысле "параллельны" друг другу.
В 3-мерном пространстве компоненты скорости не изменятся, если координатный базис повернуть вокруг вектора . Поэтому для однозначной фиксации осей, вообще говоря, требуется ещё одно направление. Например, наблюдатели могут согласовать координаты двух параллельных "линеек", расположенных ортогонально к относительной скорости (аналогично, параллельны оси , и , при движении вдоль оси ).

Рисунок 3. Согласование единиц измерения двумя системами отсчёта.
Для вывода преобразований Лоренца в векторном виде, радиус-вектор раскладывается по двум векторам : параллельному к скорости и перпендикулярному . Для них выполняются обычные преобразования Лоренца (5):
(6)
|
Подставляя их в и заменяя на , несложно записать преобразования Лоренца в векторном виде:
(7)
|
где кроме фактора , введено обозначение для величины , которая обладает следующими свойствами:
(8)
|
Обратные преобразования Лоренца получаются заменой .
Преобразования Лоренца являются пассивными (см. приложение А), т.к. связывают результаты наблюдения одного и того же события относительно различных систем отсчёта. Учитывая процедуру согласования `'параллельности" координатных осей двух систем отсчёта, соотношения (7) можно расписать по компонентам для , и скорости (компоненты которой заданы относительно ). В результате получится связь времени и координат одного и того же события, регистрируемого различными наблюдателями.
Пусть наблюдатели в системе одновременно (по своим часам) фиксируют положение осей системы . В следующем разделе мы покажем, что эти оси (в общем случае) оказываются не только не параллельными к осям системы , но даже и не являются ортогональным базисом (с точки зрения неподвижных наблюдателей). Поэтому "параллельность" координатных осей в преобразованиях Лоренца (7) необходимо понимать только в том смысле, что наблюдатели выполнили описанную выше процедуру согласования единиц измерения и после этого независимо (по компонентам скорости ) задали ориентацию координатных осей.
Примчания
- Перейти ↑ Einstein A. — "Zur Elektrodynamik der bewegter Korper", Ann. Phys. 17 pp.891-921 (1905).
- Перейти ↑ von Ignatowsky W. A. — "Einige allgemeine Bemerkungen zum Relativit\"atsprinzip", Archiv der Mathematik und Physik, 17. p. 1 ff. (1910). Перевод: http://synset.com
- Перейти ↑ Frank P. and Rothe H. — "\"Ober die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte Systeme", Ann. Phys. 34, pp.825-853 (1911). Перевод: http://synset.com
- Перейти ↑ Степанов С. С. — "100 лет без второго постулата Эйнштейна", (2010), http://synset.com
Введение << | Оглавление | >> Лоренцевское сокращение |
---|