Решение уравнения Фоккера-Планка — различия между версиями

Материал из synset
Перейти к: навигация, поиск
м (Защищена страница «Решение уравнения Фоккера-Планка» ([edit=sysop] (бессрочно) [move=sysop] (бессрочно)))
Строка 7: Строка 7:
  
  
 +
<math>\textstyle \bullet</math> Выведем теперь второе дифференциальное уравнение для функции <math>\textstyle P(x_0,t_0 \Rightarrow x, t)</math> по "будущим" аргументам <math>\textstyle x,t</math>. Пусть процесс Ито в момент времени <math>\textstyle t-\Delta t</math> имеет значение <math>\textstyle x</math>. Спустя малый интервал времени <math>\textstyle \Delta t</math> он будет иметь значение <math>\textstyle y</math>:
 +
 +
{| width="100%"
 +
| width="90%" align="center"|<math> y=x+a\, \Delta t + b \, \varepsilon \sqrt{\Delta t}, </math>
 +
| <div width="10%" align="right" style="color:#0000CC">'''(EQN)'''</div>
 +
|}
 +
 +
где <math>\textstyle a=a(x, t-\Delta t)</math>, <math>\textstyle b=b(x, t-\Delta t)</math>. Величина <math>\textstyle x</math> является случайной с плотностью распределения <math>\textstyle P(x,t-\Delta t)=P(x_0,t_0\Rightarrow x,t-\Delta t)</math>. Случайной и независимой от неё будет и <math>\textstyle \varepsilon</math> c гауссовой плотностью <math>\textstyle P(\varepsilon)</math>. В результате <math>\textstyle y</math> в момент <math>\textstyle t</math> также будет случайной величиной.
 +
 +
Чтобы найти распределение <math>\textstyle P(y,t)=P(x_0,t_0\Rightarrow y,t)</math>, необходимо вычислить среднее от произвольной функции (см. стр. \pageref{aver_fun_def}):
 +
 +
{| width="100%"
 +
| width="90%" align="center"|<math> \left\langle F(y)\right\rangle = \int\limits^\infty_{-\infty} \overbrace{F(x+a\Delta t +b\varepsilon\sqrt{\Delta t})}^{F(y)}\cdot \overbrace{P(x, t-\Delta t) P(\varepsilon)}^{P(x,\varepsilon)} \,dx\,d\varepsilon </math>
 +
| <div width="10%" align="right" style="color:#0000CC">'''(EQN)'''</div>
 +
|}
 +
 +
и преобразовать его таким образом, чтобы получился однократный интеграл c <math>\textstyle F(y)</math> ''в момент времени'' <math>\textstyle t</math>. Обратим внимание, что, если в () <math>\textstyle x</math>, <math>\textstyle y</math> и <math>\textstyle \varepsilon</math> &mdash; это случайные величины, потенциально принимающие любые значения, то в () они же выступают в виде обычных вещественных переменных интегрирования.
 +
 +
Так как <math>\textstyle \Delta t</math> малo, разложим <math>\textstyle F(..)</math> в ряд, оставляя члены порядка не более <math>\textstyle \Delta t</math>:
 +
 +
:<center><math>F(x+a\Delta t +b\varepsilon\sqrt{\Delta t})= F(x)+\frac{\partial F}{\partial x}\,\bigl(a\,\Delta t + b\,\varepsilon \,\sqrt{\Delta t}\bigr) + \frac{1}{2} \frac{\partial^2 F}{\partial x^2} \,b^2\,\varepsilon^2 \,\Delta t +...</math></center>
 +
 +
Все функции справа вычислены в точке <math>\textstyle x</math> и в момент времени <math>\textstyle t</math>. Заметим, что в () функции вычислялись в момент времени <math>\textstyle t-\Delta t</math>. На самом деле их тоже необходимо разложить по <math>\textstyle \Delta t</math>. Однако эти ряды будут умножаться на <math>\textstyle \Delta t</math>, <math>\textstyle \sqrt{\Delta t}</math> и окажутся малыми более высокого порядка. Поэтому можно взять ведущее приближение разложения и считать в дальнейшем, что <math>\textstyle a=a(x,t)</math>, <math>\textstyle b=b(x,t)</math>.
 +
 +
Аналогично раскладывается плотность вероятности по <math>\textstyle \Delta t</math>:
 +
 +
:<center><math>P(x, t-\Delta t) = P(x, t) - \frac{\partial P(x, t)}{\partial t}\,\Delta t + ...</math></center>
 +
 +
Этим соотношением мы связываем плотности вероятности в два бесконечно близких момента времени, в результате чего в конечном уравнении появится частная производная по времени.
 +
 +
Подставим последние два разложения в (), выдерживая порядок малости по <math>\textstyle \Delta t</math>. Интегрирование по <math>\textstyle \varepsilon</math> сводится к <math>\textstyle \left\langle \varepsilon\right\rangle =0</math>, <math>\textstyle \left\langle \varepsilon^2\right\rangle =1</math>, и в результате:
 +
 +
:<center><math>\left\langle F(y)\right\rangle = \int\limits^\infty_{-\infty} F(x)P(x,t)dx - \Delta t \int\limits^\infty_{-\infty} \left[ F\,\frac{\partial P}{\partial t} -\frac{\partial F}{\partial x}\;a P - \frac{1}{2} \frac{\partial^2 F}{\partial x^2} \; b^2 P \right] dx.</math></center>
 +
 +
Во втором интеграле <math>\textstyle F=F(x)</math>, <math>\textstyle P=P(x,t)</math>. Первый интеграл представляет определение искомого среднего ''в момент времени'' <math>\textstyle t</math> (переменная интегрирования <math>\textstyle x</math> может быть переобозначена в <math>\textstyle y</math>). Поэтому второй интеграл должен быть равен нулю. Интегрируя по частям один раз второе слагаемое в квадратных скобках и два раза третье (<math>\textstyle \lessdot</math> C), получим <math>\textstyle F(x)</math>, умноженную на выражение:
 +
 +
{| width="100%"
 +
| width="90%" align="center"|<math> { \;\frac{\partial P}{\partial t} + \frac{\partial}{\partial x} \;\bigl[ a(x,t) \cdot P\bigr] - \frac{1}{2}\;\frac{\partial^2}{\partial x^2_{}} \;\bigl[ b^2(x,t) \cdot P \bigr]= 0\; }, </math>
 +
| <div width="10%" align="right" style="color:#0000CC">'''(EQN)'''</div>
 +
|}
 +
 +
которое должно быть равно нулю (в силу произвольности <math>\textstyle F(x)</math>). Это ''уравнение Фоккера - Планка'', или ''второе уравнение Колмогорова'' для плотности условной вероятности <math>\textstyle P=P(x_0,t_0 \Rightarrow x, t)</math>.
 +
 +
Решение уравнения Фоккера-Планка позволяет найти плотность вероятности условного перехода. Имея её, мы фактически знаем о марковском случайном процессе всё. Можем вычислять его среднее, волатильность, автокорреляционную функцию и отвечать на другие вопросы.
 +
 +
Естественно, кроме начального условия (), предполагается наличие граничных условий для плотности вероятности. Так как мы знаем, что в момент времени <math>\textstyle t_0</math> значение <math>\textstyle x</math> было равно <math>\textstyle x_0</math>, то спустя ''конечный'' интервал времени цена или броуновская частица не могут "заблуждать" бесконечно далеко. Поэтому мы считаем, что плотность вероятности на бесконечности равна нулю. Это же требование возникает в силу ''условия нормировки'':
 +
 +
{| width="100%"
 +
| width="90%" align="center"|<math> \int\limits^\infty_{-\infty} P(x_0, t_0 \Rightarrow x, t) \, dx = 1, </math>
 +
| <div width="10%" align="right" style="color:#0000CC">'''(EQN)'''</div>
 +
|}
 +
 +
имеющего смысл вероятности перехода "куда угодно".
 +
 +
Так как дифференциальное уравнение () линейно относительно функции <math>\textstyle P</math>, то решение не изменяется при умножении <math>\textstyle P</math> на произвольную константу. Её значение должно фиксироваться при помощи условия нормировки ().
  
 
----
 
----

Версия 18:58, 21 февраля 2010

Уравнение для плотности вероятности << Оглавление >> Граничные условия


Выведем теперь второе дифференциальное уравнение для функции по "будущим" аргументам . Пусть процесс Ито в момент времени имеет значение . Спустя малый интервал времени он будет иметь значение :

(EQN)

где , . Величина является случайной с плотностью распределения . Случайной и независимой от неё будет и c гауссовой плотностью . В результате в момент также будет случайной величиной.

Чтобы найти распределение , необходимо вычислить среднее от произвольной функции (см. стр. \pageref{aver_fun_def}):

(EQN)

и преобразовать его таким образом, чтобы получился однократный интеграл c в момент времени . Обратим внимание, что, если в () , и — это случайные величины, потенциально принимающие любые значения, то в () они же выступают в виде обычных вещественных переменных интегрирования.

Так как малo, разложим в ряд, оставляя члены порядка не более :

Все функции справа вычислены в точке и в момент времени . Заметим, что в () функции вычислялись в момент времени . На самом деле их тоже необходимо разложить по . Однако эти ряды будут умножаться на , и окажутся малыми более высокого порядка. Поэтому можно взять ведущее приближение разложения и считать в дальнейшем, что , .

Аналогично раскладывается плотность вероятности по :

Этим соотношением мы связываем плотности вероятности в два бесконечно близких момента времени, в результате чего в конечном уравнении появится частная производная по времени.

Подставим последние два разложения в (), выдерживая порядок малости по . Интегрирование по сводится к , , и в результате:

Во втором интеграле , . Первый интеграл представляет определение искомого среднего в момент времени (переменная интегрирования может быть переобозначена в ). Поэтому второй интеграл должен быть равен нулю. Интегрируя по частям один раз второе слагаемое в квадратных скобках и два раза третье ( C), получим , умноженную на выражение:

(EQN)

которое должно быть равно нулю (в силу произвольности ). Это уравнение Фоккера - Планка, или второе уравнение Колмогорова для плотности условной вероятности .

Решение уравнения Фоккера-Планка позволяет найти плотность вероятности условного перехода. Имея её, мы фактически знаем о марковском случайном процессе всё. Можем вычислять его среднее, волатильность, автокорреляционную функцию и отвечать на другие вопросы.

Естественно, кроме начального условия (), предполагается наличие граничных условий для плотности вероятности. Так как мы знаем, что в момент времени значение было равно , то спустя конечный интервал времени цена или броуновская частица не могут "заблуждать" бесконечно далеко. Поэтому мы считаем, что плотность вероятности на бесконечности равна нулю. Это же требование возникает в силу условия нормировки:

(EQN)

имеющего смысл вероятности перехода "куда угодно".

Так как дифференциальное уравнение () линейно относительно функции , то решение не изменяется при умножении на произвольную константу. Её значение должно фиксироваться при помощи условия нормировки ().


Уравнение для плотности вероятности << Оглавление >> Граничные условия

Стохастический мир - простое введение в стохастические дифференциальные уравнения