Истинность и доказуемость
Внимание! Это старая версия сайта. Вход на новую находится на стартовой странице "http://synset.com". Там можно найти новые материалы и последние версии книг. |
При определённом размышлении, некоторые вещи и идеи, в силу
привычности кажущиеся очевидными, таковыми на самом деле не являются.
Осознание этого не только исключительно интересно,
но и даёт импульс для дальнейших размышлений.
Мы сконцентрируемся на таких фундаментальных понятиях математики, как доказательство, алгоритм и множество. Будет проанализирован мощный, но требующий осторожности метод рассуждения от противного. При помощи простого высокоуровневого варианта машины Тьюринга мы обсудим некоторые понятия теории алгоритмов. После этого переберёмся в канторовский рай и совершим небольшую, но достаточно критическую экскурсию по теории множеств. В заключение мы обсудим теорему Гёделя о неполноте математики, понятие истины, и связанные с ними проблемы построения искусственного интеллекта.
Необходимо предупредить, что ряд утверждений, приведенных в этой главе, не разделяется многими математиками, поэтому к ним необходимо относится предельно критично. Однако, именно в этом и состоит цель -- пробудить, иногда, возможно в провокационной форме, два самых важных свойства -- умение удивляться и сомневаться.
Перед чтением стоит просмотреть совет по настройке браузера для более комфортного просмотра формул.
Версия для печати: (pdf).
С уважением, Сергей Степанов
Математика, от мамонтов до наших дней
Вычислимые функции и их алгоритмы
Проблемы остановки и тождественности
Перечислимые и разрешимые множества