Тензор энергии-импульса — различия между версиями

Материал из synset
Перейти к: навигация, поиск
м (Защищена страница «Тензор энергии-импульса» ([edit=sysop] (бессрочно) [move=sysop] (бессрочно)))
 
Строка 1: Строка 1:
 
{| width="100%"   
 
{| width="100%"   
 
  | width="30%"|[[Лагранжев подход]] <<  
 
  | width="30%"|[[Лагранжев подход]] <<  
  ! width="40%"|[[Релятивистский мир|Оглавление]] (Последняя версия в: [http://synset.com/pdf/relworld_05.pdf Глава 6])  
+
  ! width="40%"|[[Релятивистский мир|Оглавление]] (Последняя версия в: [http://synset.com/pdf/relworld_07.pdf Глава 7])  
 
  | width="30%" align="right"| >> [[Теорема Нётер]]
 
  | width="30%" align="right"| >> [[Теорема Нётер]]
 
|}
 
|}
Строка 222: Строка 222:
 
{| width="100%"   
 
{| width="100%"   
 
  | width="30%"|[[Лагранжев подход]] <<  
 
  | width="30%"|[[Лагранжев подход]] <<  
  ! width="40%"|[[Релятивистский мир|Оглавление]] (Последняя версия в: [http://synset.com/pdf/relworld_05.pdf Глава 6])
+
  ! width="40%"|[[Релятивистский мир|Оглавление]] (Последняя версия в: [http://synset.com/pdf/relworld_07.pdf Глава 7])
 
  | width="30%" align="right"| >> [[Теорема Нётер]]
 
  | width="30%" align="right"| >> [[Теорема Нётер]]
 
|}
 
|}
 
----
 
----
 
[[Релятивистский мир]] - лекции по теории относительности, гравитации и космологии
 
[[Релятивистский мир]] - лекции по теории относительности, гравитации и космологии

Текущая версия на 19:04, 2 июля 2013

Лагранжев подход << Оглавление (Последняя версия в: Глава 7) >> Теорема Нётер

Как для заряженных частиц, движущихся во внешних полях, так и для самих полей, справедливы законы сохранения. Рассмотрим сначала закон сохранения энергии при движении пробной частицы в стационарном поле. Пусть потенциалы поля в лагранжиане явным образом не зависят от времени (). В этом случае время в них входит только через траекторию частицы . Используя уравнения Лагранжа (), стр.\,\pageref{fld_lagr_vec_form}, запишем полную производную по времени:

Перенося в правую часть, приходим к выводу, что следующая величина, называемая полной энергией

(EQN)

сохраняется, т.е . Производная функции Лагранжа по скоростям динамических переменных называется обобщённым импульсом. Для функции Лагранжа свободной частицы обобщённый импульс совпадает с релятивистским импульсом. При движении частицы в электромагнитном поле он "удлиняется" (стр.\,\pageref{h_bk_fl_dA}) за счёт члена в лагранжиане (), зависящего от скорости:

Подставляя его в выражение для полной энергии (), получаем:

(EQN)

Векторный потенциал сокращается и полная энергия частицы равняется сумме энергии движения и потенциальной энергии. Последняя определяется только значением скалярного потенциала .

Приравнивая полную производную этого выражения по времени нулю, получаем знакомое выражение связи изменения энергии движения и силы (потенциал явно от времени не зависит)

где учтено, что и, следовательно, , а магнитная составляющая силы при произведении на скорость даёт ноль . Таким образом, стационарное электромагнитное поле полную энергию частицы не меняет.

Введём плотность массы точечной частицы , движущейся по траектории . По аналогии с плотностью тока заряда (), стр.\,\pageref{j_def} для непрерывного распределения вещества определим плотность тока массы, удовлетворяющего уравнению непрерывности:

(EQN)

Как и плотность тока заряда, плотность тока массы является 4-вектором, а соответствующее уравнение непрерывности — ковариантным.

Умножим уравнение движения точечного заряда (стр.\,\pageref{lorez_force_cov}):

слева и справа на дельта-функцию . Слева получится плотность массы , а справа плотность заряда . Так как плотность тока заряда равна , получаем уравнение движения, справедливое и для непрерывного распределения массы и заряда:

(EQN)

Говоря о непрерывной среде в которой распределён заряд и масса мы подразумеваем, что в каждой точке пространства изменяется не только их плотность но и скорость. Другими словами, скорость становится функцией координат (именно так понимается плотность тока ). Поэтому полная производная по времени от 4-скорости равна . В результате уравнение движения () заряженной среды можно переписать следующим образом:

(EQN)

где во втором равенстве использовано уравнение непрерывности массы (). Введём следующий симметричный тензор:

(EQN)

С его помощью уравнение движения непрерывной заряженной среды () можно записать следующим образом:

(EQN)

Выпишем в явном виде компоненты тензора :

где и — 3-скорость. Таким образом, — это плотность энергии движения частиц, а — плотность их импульса.

Перейдём теперь к сохранению энергии-импульса электромагнитного поля. Вычислим производную от лагранжиана:

В первом слагаемом подставим уравнения Лагранжа, во втором переставим частные производные и воспользуемся формулой производной произведения:

Выражение , при помощи символа Кронекера, можно переписать в следующем виде: . В результате получается уравнение:

(EQN)

где введен канонический тензор энергии-импульса электромагнитного поля:

(EQN)

При помощи метрического тензора можно поднять индекс вверх, переписав канонический тензор энергии-импульса в эквивалентном виде:

(EQN)

Разберёмся с уравнением (), которому удовлетворяет . По своей форме это уравнение непрерывности (стр.\,\pageref{elec_q_save}):

Для каждого из четырех значений индекса мы имеем свой закон сохранения, аналогичный закону сохранение заряда. При этом — имеет смысл чего-то сохраняющегося в объёме, если поток величин через поверхность, окружающую объём равен нулю.

Для введём плотность энергии и плотность импульса и запишем уравнение непрерывности в векторном виде:

Это соотношение мы уже получали при рассмотрении энергии электромагнитного поля (теорема Пойнтинга, стр.\,\pageref{energy_E}).

Найдём тензор энергии-импульса для лагранжиана электромагнитного поля в пустом пространстве ()

Производная лагранжиана по равна (\,H), поэтому:

(EQN)

К тензору энергии-импульса можно прибавить производную , так как она тождественно удовлетворяет уравнению непрерывности. Действительно, не зависимо от уравнений движения

так как тензор — симметричен, а — антисимметричен и их свёртка равна нулю (стр.\,\pageref{m_antisym_sym}). Таким образом, если удовлетворяет уравнению непрерывности, то ему будет удовлетворять также тензор

Учитывая уравнения движения (), стр.\,\pageref{cov_macswell} c , напишем:

и разделив на , вычтем из тензора энергии-импульса. В результате:

(EQN)

Этот тензор симметричен по и имеет нулевой след: (\,H).

Тензор энергии-импульса (), полученный по формуле () называется каноническим. Этот тензор зависит как от напряженностей поля, так и от потенциалов. В отличие от него, симметричный тензор () от потенциалов не зависит. Говорят, что он является калибровочно инвариантным. Действительно, если сделать преобразование , где — произвольная функция координат, то тензор напряженностей не изменится. Не поменяются также уравнения движения и симметричный тензор энергии-импульса. Так как физические результаты не должны зависеть от произвольной функции , более предпочтительными являются калибровочно инвариантные выражения. Тем не менее произвол в выборе тензора энергии-импульса (добавление к нему выражения автоматически удовлетворяющего уравнению непрерывности) не сказывается на физических выводах. Мы вернёмся к этому вопросу чуть позже.

Выше мы симметризовали тензор энергии-импульса, предполагая, что зарядов, создающих поле в пространстве нет (свободное электромагнитное поле). В общем случае, когда токи не равны нулю, в силу уравнения (), будет сохраняться сумма тензора энергии-импульса поля () и частиц ():

(EQN)

Докажем это, вычислив 4-дивергенцию от ():

Первое слагаемое в правой части, благодаря ковариантному уравнению Максвелла, будет пропорционально 4-току. Сумма последних двух слагаемых равна нулю. Действительно, во втором слагаемом переобозначим немые (суммационные) индексы , , а в третьем слагаемом подставим второе ковариантное уравнение Максвелла (без источников) () стр.\,\pageref{Macwell_cov_j0}:

В результате сумма последних двух слагаемых, помеченных фигурной скобкой равна:

В последнем слагаемом переобозначим индексы , и получим, в силу антисимметрии , ноль. Таким образом:

С другой стороны, в соответствии с уравнением () для тензора энергии-импульса вещества имеем . Поэтому 4-дивергенция суммы будет равна нулю.

Обратим внимание, что в законе сохранения () поля и заряды входят равноправным образом. Этот закон будет выполняться, если одновременно используются уравнения Максвелла для полей, создаваемых зарядами и уравнения движения (сила Лоренца) для этих-же зарядов в создаваемых ими полях. Таким образом, не производится разделения на источники поля и пробные заряды (см. также стр.\,\pageref{energy_E_int}).

В заключение выразим компоненты тензора энергии-импульса:

через напряжённости поля. Для первого слагаемого в круглых скобках, имеем:

и т.д. Во втором слагаемом стоит инвариант . Поэтому компоненты тензора с нулевым индексом равны плотностям энергии и импульса (стр.\,\pageref{W_P_E_B}):

(EQN)

Аналогично расписываются пространственные компоненты тензора. Это даёт тензор потока импульса (см. стр.\,\pageref{em_P_consv0}):

(EQN)

Полученные в главе законы сохранения энергии и импульса непосредственно следуют из уравнения непрерывности . Действительно, пусть заряды, находящиеся в объёме , окруженном поверхностью , эту поверхность не пересекают, оставаясь, внутри объёма. Запишем для этого случая интегральную форму уравнения непрерывности:

При плотность энергии среды системы точечных зарядов равна:

Интегрируя по , получаем суммарную энергию движения зарядов. Выражение же для энергии-импульса поля дают закон сохранения энергии (), стр.\,\pageref{energy_E_int}. Аналогично для закона сохранения импульса

Может возникнуть вопрос, почему нельзя ограничится плотностями энергии и импульса и приходится рассматривать тензор? Дело в том, что в отличии, например, от плотности тока, четвёрка величин не образует 4-вектора. В этом легко убедиться, подставив в них преобразования Лоренца для напряжённостей поля. Простыми трансформационными свойствами обладает именно тензор , частью компонент которого являются плотности энергии и импульса.


Лагранжев подход << Оглавление (Последняя версия в: Глава 7) >> Теорема Нётер

Релятивистский мир - лекции по теории относительности, гравитации и космологии