Стохастические уравнения

Материал из synset
Перейти к: навигация, поиск

Стохастический мир

Благодаря трудам Ньютона и Лейбница исследователи получили в своё распоряжение дифференциальные уравнения. Если некоторые величины изменяются во времени, то обычно существует система уравнений, описывающих эту динамику.

Простейший пример -- часто встречающийся закон пропорциональности скорости изменения величины ей самой:

Функция может описывать количество кроликов, скорость размножения которых тем больше, чем больше их уже родилось. Более экономический пример -- динамика роста средств производства, увеличение которых тем больше, чем больше их накоплено к данному моменту времени, или рост численности человечества по Мальтусу. Если , то это уравнение называют уравнением роста, в противном случае -- уравнением распада. \index{уравнение!роста}\index{уравнение!распада} В решении присутствует произвольная константа , для определения которой необходимо задать, например, начальное количество кроликов в момент времени .


Экспоненциальная функция растёт очень быстро. Если бы кролики размножались всё время только в соответствии с этим уравнением, Земля быстро стала бы белой и пушистой. На практике они не только размножаются, но и умирают. Относительное изменение численности популяции в общем случае может быть функцией . Разложим её в ряд , ограничившись линейной зависимостью. Второе слагаемое имеет смысл уменьшения относительного прироста в результате уничтожения природных ресурсов (из-за нехватки травы). Это происходит тем интенсивнее, чем больше численность популяции. В результате более реалистичное уравнение приводит к логистической функции, \index{логистическая функция}\index{функция!логистическая}\index{логистическое уравнение}\index{уравнение!логистическое} которая со временем выходит на стационарное значение (при ):

Решение уравнения () получается ( H) после замены . Асимптотически () равновесное значение легко найти из уравнения, в котором ( C). Стоит напомнить, что () применимо и к приматам, считающим себя разумными и живущим на планете с ограниченными ресурсами, хотя само по себе логистическое уравнение носит оттенок каннибализма ( C).


Дифференциальные уравнения впервые появились в классической механике. Действующая сила \index{уравнения!динамики} изменяет импульс частицы:

где точка сверху означает производную по времени , а -- массу частицы. К примеру, если сила линейна , то координата частицы совершает колебания с частотой ( H). Так как уравнений два, возникают две константы. Поэтому необходимо задать два начальных условия для координаты и импульса .


Большинство экономических, биологических и физических систем может быть описано при помощи системы дифференциальных уравнений:

где -- вектор переменных, описывающих состояние системы. Векторная функция определяет её динамику. Любые дифференциальные уравнения, содержащие производные второго и более высоких порядков, можно свести к системе () введением новых динамических переменных. Примером этого служат уравнения механики в форме Гамильтона ().

Мы записали () в виде изменения вектора за бесконечно малый интервал времени . Такое представление даёт простой алгоритм численного интегрирования уравнений () в ситуации, когда аналитическое решение получить не удаётся. Для этого бесконечно малые изменения заменяют на малые, но конечные , . В результате () соответствует дискретной итерационной схеме:\index{итерационная схема}

Задав начальный вектор , мы получаем его новое значение через интервал . Затем подставляем вместо и находим . Повторяя эту процедуру, мы приходим к последовательности значений вектора в дискретные моменты времени , , , и т.д. Чем меньше интервал времени , тем ближе численные значения схемы () будут приближаться к истинному решению уравнения ().


Успехи естественных наук, использующих дифференциальные уравнения, за последние 300 лет впечатляют. Однако более аккуратное сравнение теоретических результатов с экспериментальными данными показывает, что обыкновенные дифференциальные уравнения -- только часть правды.

В большинстве ситуаций изучаемая система подвержена непредсказуемым внешним воздействиям, которые делают динамику не такой гладкой. Летящий по параболе камень лишь в первом приближении следует математической кривой. Его неизбежный контакт с воздухом приводит к некоторым флуктуациям возле этой траектории. Ещё большая нерегулярность обнаруживается при переходе к небольшим объектам, которые, подобно броуновской пыльце, испытывают нерегулярные удары молекул и имеют совсем изломанную траекторию. Степень изломанности координат пыльцы в этом случае настолько велика, что её производную по времени уже нельзя определить.

По мере структурного усложнения природных систем роль стохастических (случайных) процессов возрастает. Кролики размножаются в соответствии с логистическим уравнением только в очень грубом приближении. Флуктуации численности популяции за счёт случайных внутренних и внешних факторов, не учитываемых простой моделью (), на самом деле очень велики. Аналогично и рост экономики имеет экспоненциальный характер только в первом приближении. Функция в реальности сильно искажается экономическими подъёмами и спадами, имеющими стохастический, сложно предсказуемый характер. Наконец, в финансовом мире случайность является доминантой, которая определяет саму сущность рынков. Стохастика в этом случае, как и в броуновском движении, является не малой поправкой, а главным приближением к реальности.

Таким образом, наш мир не является детерминированным. Его истинное лицо -- вероятностное: \begin{quote}\it Обыкновенные дифференциальные уравнения -- это лишь первое приближение к реальности. Более адекватным инструментом исследования являются стохастические уравнения ( C). \end{quote} В наших лекциях будет обсуждаться математический аппарат, позволяющий совместить в одной упряжке две столь не похожие друг на друга сущности: детерминированную, гладкую динамику и скачкообразные, изломанные случайные процессы.


Говоря о внешнем шуме, нарушающем гладкую динамику, мы подразумеваем, что справедливо стохастическое уравнение следующего вида:\index{стохастическое уравнение}

Оно описывает детерминированное (первое слагаемое) и случайное (второе) изменение переменных состояния системы . Так как предполагается малым, соответственно, определённым образом при уменьшении интервала времени должен уменьшаться и шум. Наши рассуждения будут посвящены корректному введению в дифференциальные уравнения шума , обладающего теми или иными свойствами.

Решением стохастического уравнения является случайная функция , которая зачастую существенно отличается от добропорядочной функции математического анализа. Если под увеличением рассмотреть сильно изгибающуюся обычную функцию, мы увидим, что она гладкая в малых масштабах. Стохастическая, случайная функция при любом увеличении может оставаться изломанной: \includegraphics{pic/stat_stoch.eps} Несмотря на то, что случайная функция предполагается непрерывной, обычно это недифференцируемая функция. Действительно, производная представляет собой отношение при . Сколь малый интервал времени мы ни взяли бы, за счёт случайных факторов направление изменения функции может иметь непредсказуемо различный знак. В результате мы не получаем сходимости к определённому пределу. Понятно, что для такого многие факты математического анализа должны быть существенным образом пересмотрены.

Нас будут интересовать методы решения уравнений, подобных (). В тех случаях, когда точное решение получить не удастся, мы будем использовать численное моделирование или приближенные аналитические соотношения. Излишне напоминать, что любой математический аппарат в конечном счёте разрабатывается для того, чтобы получить более мощные средства исследования окружающего мира. Поэтому за каждым уравнением или его решением необходимо видеть реальный случайный процесс в финансах, физике или биологии.


Категория:Стохастические процессы