Прецессия Томаса — различия между версиями

Материал из synset
Перейти к: навигация, поиск
 
Строка 1: Строка 1:
 +
{| border="1" cellpadding="5" cellspacing="0" align="center" style="background-color:#FEDBCA; text-align: center;"
 +
| <span style="color:red">Внимание!</span><br>  Это старая версия сайта. <br>Вход на новую находится на стартовой странице [http://synset.com/ "http://synset.com"].<br> Там можно найти новые материалы и последние версии книг.
 +
|}
 +
 +
 
<center>'''Прецессия Томаса'''</center>
 
<center>'''Прецессия Томаса'''</center>
  

Текущая версия на 09:35, 28 июля 2017

Внимание!
Это старая версия сайта.
Вход на новую находится на стартовой странице "http://synset.com".
Там можно найти новые материалы и последние версии книг.


Прецессия Томаса
Как она выглядит на самом деле.
С.С. Степанов

Для ссылок: Прецессия Томаса для спина и стержня / С.С. Степанов / / Физика элементарных частиц и атомного ядра. - 2/2012. - Т.43, No.1.

В работе получены дифференциальные уравнения, описывающие поворот стержня и прецессию собственного момента импульса гироскопа, движущихся по криволинейной траектории. Рассмотрены различные примеры такого движения. Полученные уравнения отличаются от известной формулы Томаса, если интерпретировать её как поворот неинерциальной системы отсчёта относительно лабораторной системы. Связано это с тем, что координатные оси движущейся системы отсчёта, в общем случае, неортогональны для неподвижных наблюдателей. При изменении скорости их ориентация изменяется не только в результате вигнеровского вращения, но и в силу лоренцевского сокращения длины. В работе выполнен совместный учёт этих эффектов. Показано, что векторы, связанные с различными физическими величинами, изменяются различным образом при движении неинерциальной системы отсчёта. В частном случае равномерного движения по окружности, частота прецессии, как и длина векторов, периодически изменяется со временем. Однако оказывается, что в среднем, значение частоты прецессии совпадает с частотой Томаса.

Версия для печати: pdf, презентация pdf

20 Января 2011