Обсуждение:Ковариантная электродинамика — различия между версиями

Материал из synset
Перейти к: навигация, поиск
Строка 1: Строка 1:
== Тождества с символом Леви-Чевиты
+
== Тождества с символом Леви-Чевиты ==
 
В pdf-версии главы написано, что более подробно о преобразовании для  
 
В pdf-версии главы написано, что более подробно о преобразовании для  
  
Строка 27: Строка 27:
  
 
:<center><math>\varepsilon^{\alpha\beta\gamma\lambda}\varepsilon_{\gamma\lambda\mu\nu}=-2\Bigl(\delta^\alpha_\mu\delta^\beta_\nu-\delta^\alpha_\nu\delta^\beta_\mu\Bigr), \;\;\;\;\;\; \varepsilon^{\alpha\beta\gamma\lambda}\varepsilon_{\alpha\beta\gamma\mu}=-6\delta^\lambda_\mu, \;\;\;\;\;\; \varepsilon^{\alpha\beta\gamma\lambda}\varepsilon_{\alpha\beta\gamma\lambda}=-24.</math></center>
 
:<center><math>\varepsilon^{\alpha\beta\gamma\lambda}\varepsilon_{\gamma\lambda\mu\nu}=-2\Bigl(\delta^\alpha_\mu\delta^\beta_\nu-\delta^\alpha_\nu\delta^\beta_\mu\Bigr), \;\;\;\;\;\; \varepsilon^{\alpha\beta\gamma\lambda}\varepsilon_{\alpha\beta\gamma\mu}=-6\delta^\lambda_\mu, \;\;\;\;\;\; \varepsilon^{\alpha\beta\gamma\lambda}\varepsilon_{\alpha\beta\gamma\lambda}=-24.</math></center>
 +
 +
== Вопрос :) ==

Версия 19:59, 18 октября 2012

Тождества с символом Леви-Чевиты

В pdf-версии главы написано, что более подробно о преобразовании для

можно прочитать на стр. 648. На стр. 648 книги я не нашел информации об этом. Где можно найти? Maxim 17:13, 18 октября 2012 (UTC).

Это математические приложения. Они пока не готовы. Но скопирую ниже соответствующий кусок.

В пространстве-времени определим абсолютно антисимметричный тензор Леви-Чевиты так, что и . Таким образом, значение, равное 1 для символа с нижними индексами принято по определению. Тензор с верхними индексами получается при помощи свёртки с метрическим тензором . Три ненулевых индекса приводят к нечётному произведению -1 и дают значение -1.

Произведение двух символов Леви-Чевиты выражается через определитель от символов Кронекера:

Действительно, если четвёрки индексов и различны, то:

Если любые два индекса равны, то в матрице оказываются равными две строки или два столбца. Например, при равны первые две строки. Поэтому в этом случае определитель равен нулю. Перестановка любых двух индексов приводит для первого символа к перестановке местами строк, а для второго — столбцов. В этом случае определитель меняет свой знак. Что и требовалось доказать.

Свернём по индексам и , перенеся в индекс на первое место (появится знак минус). Затем раскроем определитель по нижней строке (получится сумма 4-х определителей 3x3). Учитывая, что перестановка столбцов в определители даёт знак минус, а , получаем:

где введено сокращение и второе равенство получено раскрытием определителя. Продолжая аналогичным образом, получаем также следующие тождества:

Вопрос :)