Многомерное распределение Гаусса — различия между версиями

Материал из synset
Перейти к: навигация, поиск
Строка 19: Строка 19:
 
\left\langle \varepsilon_i\varepsilon_j\right\rangle =
 
\left\langle \varepsilon_i\varepsilon_j\right\rangle =
 
\delta_{ij} =   
 
\delta_{ij} =   
\begin{array}{ll} 1 & i=j\ 0 & i\neq j. \end{array}
+
\begin{array}{ll}  
 +
1 & i=j\\
 +
0 & i\neq j. \end{array}
 
</math>
 
</math>
 
</center>
 
</center>

Версия 16:09, 21 января 2010

Характеристическая функция << Оглавление >> Модель аддитивного блуждания

При изучении систем стохастических уравнений мы будем активно использовать матричные и тензорные обозначения. Для сокращения операции умножения матриц используется два типа соглашений:

По повторяющемуся индексу всегда подразумевается суммирование, и знак суммы опускается. Выше таковым является индекс "" во втором равенстве. Повторяющиеся индексы, по которым проводится суммирование, называют "немыми". В процессе вычислений их можно переобозначить в любую букву, которая ещё не используется в выражении. Третье равенство в уравнении () — это матричная форма той же суммы, в которой матрица и вектор перемножаются вообще без упоминания индексов и знака суммирования.

Рассмотрим независимых гауссовых случайных величин, имеющих нулевое среднее и единичную дисперсию. Среднее значение их произведения равно единице для совпадающих индексов и нулю — для различных. Подобная матрица будет обозначаться символом Кронекера:

Вычислим, например, ковариационную матрицу случайных величин :

Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \bigl<\eta_\alpha\eta_\beta\bigr> = S_{\alpha i} S_{\beta j} \bigl<\varepsilon_i\varepsilon_j\bigr> = S_{\alpha i} S_{\beta j} \delta_{ij} = S_{\alpha i} S_{\beta i} = S_{\alpha i} S^{T}_{i\beta} = (\mathbf{S}\mathbf{S}^T)_{\alpha\beta}. }

При суммировании с символом Кронекера в сумме остаются только слагаемые с . Поэтому одна из сумм (по ) и символ Кронекера исчезают, и остаётся только суммационный индекс . Затем вводится новая матрица с переставленными индексами. Подобная операция называется транспонированием. В табличном представлении она соответствует перестановке местами строк и столбцов матрицы.

Матрица может имеет обратную , если выполняется уравнение:

где — единичная матрица (символ Кронекера). Так, для определённого выше вектора можно записать:

где мы умножили левую и правую части на .

Пусть — стандартные независимые гауссовые случайные величины , а величины получены из них () при помощи перемешивающих коэффициентов . Среднее значение произведения определяется матрицей дисперсий ():

Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle D_{\alpha\beta}=\bigl<\eta_\alpha\eta_\beta\bigr>,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathbf{D} = \mathbf{S}\cdot \mathbf{S}^{T},}

которая является симметричной: .

Найдём производящую функцию для случайных величин . Для этого введём вектор и вычислим среднее экспоненты от скалярного произведения (по нет суммы!):

Мы воспользовались независимостью величин , разбив среднее произведения на произведение средних, и формулой (), стр. \pageref{aver_exp_gauss}. В показателе экспоненты стоит матричное выражение вида:

Поэтому окончательно производящая функция равна:

Взяв частные производные по , несложно найти среднее от любого произведения . Проверим, что среднее Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \textstyle \bigl<\eta_\alpha\eta_\beta\bigr>} равно . Возьмём производную производящей функции по . Учитывая, что равно , имеем:

где во втором равенстве мы воспользовались тем, что . Аналогично берётся вторая производная:

Полагая и учитывая, что

Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \frac{\partial^2 \left\langle e^{\mathbf{b}\cdot \eta}\right\rangle }{\partial b_\alpha \partial b_\beta }\Big|_{\mathbf{b}=0} = \bigl<\eta_\alpha\eta_\beta\bigr>,}

приходим к соотношению Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \textstyle D_{\alpha\beta}=\bigl<\eta_\alpha\eta_\beta\bigr>} . В качестве упражнения предлагается проверить следующее тензорное выражение:

Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \bigl<\eta_\alpha\eta_\beta\eta_\gamma\eta_k\bigr> =D_{\alpha\beta}D_{\gamma k} + D_{\alpha\gamma}D_{\beta k} + D_{\alpha k}D_{\beta \gamma}.}

Таким образом, среднее любых степеней полностью определяется матрицей дисперсии \mathbf{D}.

Найдём теперь явный вид совместной плотности вероятности для величин . Запишем сначала плотность вероятности для :

При замене переменных в интеграле необходимо изменить элемент объёма интегрирования , умножив его на якобиан:

Так как при транспонировании матрицы её определитель не изменяется, а определитель произведения матриц равен произведению их определителей, то и, следовательно:

где в показателе экспоненты подставлены :

и использовано свойство обратных матриц (см. стр. \pageref{math_mat_tensor}). Как и любая плотность вероятности, нормирована на единицу, поэтому, учитывая выражение для производящей функции Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \textstyle \bigl<e^{\mathbf{b}\cdot \eta}\bigr>} , можно записать значение следующего -мерного гауссового интеграла:

До сих пор мы работали с перемешанными величинами, имеющими нулевое среднее: Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \textstyle \bigl<\eta\bigr>=\mathbf{S}\cdot \bigl<\epsilon\bigr>=0} . Можно к ним прибавить некоторый постоянный вектор , который будет иметь смысл средних значений :

Тогда общее -мерное гауссово распределение принимает вид:

где в плотность вероятности подставлено .

Рассмотрим в качестве примера случай . Запишем элементы симметричной матрицы при помощи трёх независимых констант , и :

Несложно проверить, что определитель равен

а обратная к матрица имеет вид:

В результате совместная плотность вероятности для может быть записана следующим образом:

где — относительные отклонения от своих средних . Параметры являются волатильностями: Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \textstyle \bigl<(\eta_1-\bar{\eta}_1)^2\bigr>=D_{11}=\sigma^2_1} , а — коэффициент корреляции: .

Матрица является симметричной, тогда как в общем случае — нет. Поэтому зависит от трёх параметров, а — от четырёх, и одной и той же матрице дисперсии может соответствовать несколько различных матриц . Так, можно записать:

где . Понятно, что возможны различные комбинации "углов" и , дающие один и тот же корреляционный коэффициент .

Если , то , и является диагональной, а при — единичной. Матрицу , удовлетворяющую уравнению , называют ортогональной.

Если , , , то

Подобная смесь переводит независимые стандартные случайные величины в скоррелированные, так что  :

Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \left\{ \begin{array}{l} \eta_1 =\;\; \varepsilon_1\ \eta_2 = \rho\,\varepsilon_1+ \sqrt{1-\rho^2}\;\varepsilon_2\ \end{array} \right. \;\;\;\;\;=>\;\;\;\;\; \bigl<\eta_1\cdot\eta_2\bigr> = \rho,\;\;\;\;\;\;\bigl<\eta^2_1\bigr>=\bigl<\eta^2_2\bigr>=1.}

Это позволяет, например, при компьютерном моделировании генерить скоррелированные величины при помощи нескоррелированных.


Характеристическая функция << Оглавление >> Модель аддитивного блуждания

Стохастический мир - простое введение в стохастические дифференциальные уравнения