Уравнение для x

Материал из synset
Версия от 18:41, 15 марта 2010; WikiSysop (обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Разложение вероятности по базису << Оглавление >> Площадь под траекторией Винера

Пусть случайный процесс в момент времени выражен через гауссову переменную . Несмотря на случайность величин, представляет собой обычную функцию двух аргументов. Найдём уравнение, которому она удовлетворяет. При этом будем предполагать, что существует обратная к функция . Нам потребуются переходы от частных производных к . Для этого запишем дифференциалы:

где , и т.д. Подставляя в первое уравнение, получаем:

(4.26)

Выведем сначала уравнение для обратной функции . Пусть в момент времени случайная величина, от которой зависит , равна . Через бесконечно малый интервал времени в это уже другая гауссова переменная :

Возведём в -тую степень и разложим в ряд до первого порядка малости по , и до второго по :

где штрих обозначает частную производную по , а точка — по времени. В качестве подставим стохастическое уравнение , где случайное число не зависит от . Усредняя левую и правую части , , и сдвигая , получаем:

где — диффузия процесса. Умножим это соотношение на произвольные коэффициенты и просуммируем по :

где При усреднении производится интегрирование по с плотностью вероятности . Для функций типа предполагается, что после взятия производной необходимо выразить и подставить в .

Проинтегрируем по частям второе слагаемое в среднем:

При вычислении производной можно воспользоваться неявным дифференцированием:

где учтено, что (см. (4.26)).

Вводя функцию , получаем:

В силу произвольности функции множитель в круглых скобках должен быть равен нулю, поэтому для имеем:

(4.27)

Воспользовавшись (4.26), после несложных вычислений получаем уравнение относительно :

(4.28)

где и опущен индекс у .

В детерминированном случае () получается, как и следовало ожидать, обыкновенное дифференциальное уравнение . Начальное условие для (4.28) имеет вид .

Для гауссового распределения . Однако в качестве случайного числа можно использовать величину с произвольным распределением. Так, для функция .

В качестве упражнения ( H) предлагается проверить, что уравнения (4.27) и (4.28) согласуются с уравнением Фоккера-Планка.



Разложение вероятности по базису << Оглавление >> Площадь под траекторией Винера

Стохастический мир - простое введение в стохастические дифференциальные уравнения