Скорость
Преобразования Лоренца << | Оглавление | >> Аксиоматика Эйнштейна |
---|
Рассмотрим две инерциальные системы отсчёта и . Пусть их оси и направлены параллельно друг к другу относительной скорости. Скорость системы относительно равна , а скорость относительно , соответственно, "":

Ключевым понятием кинематики является событие. Предполагается, что оно имеет сколь угодно малые длительность и локализацию в пространстве. Событие характеризуется положением и моментом времени . Наблюдатели в каждой системе отсчета регистрируют подобное событие по своим приборам, получая значения для и для . Напомним, что наблюдатели способны проводить измерения только в своей непосредственной окрестности. Поэтому каждую систему отсчета мы представляем "заполненной" такими наблюдателями. Данное событие регистрируют два наблюдателя в и , которые находятся в том месте, где произошло событие. Благодаря процедурам синхронизации и согласования единиц времени полученные ими наблюдения будут непротиворечиво восприняты и другими собратьями из их систем отсчета. Стоит помнить, что эффекты теории относительности проявляются при больших скоростях, и для получения заметных отличий от классической кинематики часто потребуется изучать большие расстояния. Поэтому введение множества наблюдателей оказывается достаточно полезным.
Обычно представляет интерес сравнение наблюдений не единичного события, а некоторого процесса. Будем считать, что процесс состоит из двух последовательных событий: его начала в момент времени (в системе ) и конца в момент . Соответственно, его локализация в пространстве также характеризуется двумя точками и . Интервал времени между событиями и разности координат равны:
Для каждого из этих двух событий можно записать преобразования Лоренца и вычесть их друг из друга.
В силу линейности преобразований и постоянства скорости для приращений справедливы преобразования лоренцевского вида:
(1.13)
|
Часто мы будем записывать все соотношения для 2-мерного пространства , помня, что в силу симметрии связь проекций векторов на ось будет такой же, как и на ось .
Рассмотрим движущийся объект. Можно измерить его положение, т.е. координаты в момент времени , а затем положение в момент времени . По определению проекции его скорости в системе равны
и, аналогично, со штрихами в . Если скорость объекта постоянна, то величина интервала времени роли не играет. Для движения с переменной скоростью предполагается, что сколь угодно мал (производная координаты по времени).
Из преобразований для приращений (1.13) несложно найти связь между скоростями объекта для наблюдателей в системе и :
(1.14)
|
Обратные преобразования скорости получаются прямыми вычислениями. Впрочем, в силу эквивалентности инерциальных систем отсчета можно сразу изменить знак у скорости и переставить местами штрихованные и нештрихованные величины:
(1.15)
|
Если, например, мы стоим на перроне и — это скорость мухи относительно поезда, который движется со скоростью , то скорость мухи относительно нас будет складываться из движения поезда и движения мухи. В классической механике это сложение имеет вид:
В теории относительности подобные соотношения — лишь некоторое приближение, справедливое до тех пор, пока скорости поезда и мухи много меньше фундаментальной скорости . Чем быстрее движется муха или поезд, тем сильнее "сложение" их скоростей (1.15) отличается от классического.
Попрактикуемся в восстановлении фундаментальной константы . Для всех скоростей необходимо сделать замену , поэтому преобразование скоростей, например, вдоль оси принимает вид:
Рассмотрим объект, движущийся вдоль оси с фундаментальной скоростью . Тогда в другой системе его скорость будет равна:
Таким образом, объект, движущийся со скоростью, равной "", в одной системе отсчета, будет иметь ту же скорость и в любой другой системе. Поэтому "" можно также назвать инвариантной скоростью.
При помощи преобразований (1.14) несложно ( H) проверить, что квадрат длины скорости преобразуется следующим образом:
(1.16)
|
где — проекция скорости объекта на скорость системы . Если в одной системе отсчета объект движется в произвольном направлении с фундаментальной скоростью Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{u}^2=c^2=1} , то и в другой инерциальной системе Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{u}'^2=1} , поэтому "Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c} " является инвариантной скоростью независимо от её направления.
Подобная инвариантность обычно в качестве постулата используется при выводе преобразований Лоренца (см. следующий раздел). Однако это, на самом деле, следствие теории относительности, причем одно из наиболее необычных и непривычных для нашего обыденного опыта.
Запишем при помощи векторных преобразований Лоренца (1.12), стр. \pageref{lorenz_vec0}, преобразование для скорости также в векторном виде. Разделив Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta\mathbf{r}'} на Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta t'} , получаем:
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{u}' = \frac{\mathbf{u}-\gamma\mathbf{v} + \Gamma\,{\mathbf v}\,({\mathbf v}{\mathbf u})} {\gamma\,(1-\mathbf{u}\mathbf{v})}. } | (1.17)
|
При помощи двойного векторного произведения (тождество "бац минус цаб", стр.\pageref{abc_bac_cab}) это преобразование можно переписать в таком виде:
(1.18)
|
Если скорость системы отсчёта Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle S'} параллельна скорости тела, то произведение Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{v}\times\mathbf{u}=0} и (1.18) совпадает с одномерным преобразованием скорости вдоль оси Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle x} (1.14).
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \bullet} Фундаментальная инвариантная скорость "Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c} " является также предельно возможной скоростью движения "материального" объекта. В самом деле, пусть наблюдатель в системе Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle S} создаёт своего клона и отправляет его в полет со скоростью (система Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle S_1} ). Первый клон создает второго и "отправляет" его с той же скоростью относительно себя (система Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle S_2} ), и т.д. до бесконечности. В классической физике Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n} -тый клон относительно системы Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle S} имел бы скорость Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle u_n=n\,v} , которая при Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n\to\infty} также стремилась бы к бесконечности. В релятивистском мире скорость -того и Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (n-1)} -го клонов относительно системы отсчета Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle S} связаны следующим образом:

Если протабулировать это соотношение, начиная с Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle u_0=0} , Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle v=1/2} , то получится график, приведенный на рисунке справа. Скорость Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle u_n} при Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n\to\infty} стремится к . Хотя Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle u_n} постоянно увеличивается, относительно наблюдателя в Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle S} каждая добавка становится всё меньше. При Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n\to\infty} можно положить Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle u_{n}=u_{n-1}=u_\infty} и получить асимптотическое значение, не зависящее от Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle v} : Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle u_\infty = (u_\infty + v)/(1+u_\infty \,v),} откуда
Найдём явную зависимость от . Закон сложения скоростей (1.15) можно записать следующим образом:
Вводя гиперболический арктангенс (стр. \pageref{m_hyperbol}), имеем:
Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \mathrm{ath}(u_x)=\mathrm{ath}(u'_x)+\mathrm{ath}(v),\;\;\;\;\;\;\;где\;\;\;\mathrm{ath}(v)=\frac{1}{2}\,\ln \frac{1+v}{1-v}.}
Поэтому , или:
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle u_n = \frac{1-w^n}{1+w^n},\;\;\;\;\;\;\;\;\;w=\frac{1-v}{1+v} < 1.}
Понятно, что при Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle n\to \infty} , Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle u_n\to 1} . Формула сложения скоростей, записанная при помощи гиперболического арктангенса, имеет важный геометрический смысл, который мы обсудим при рассмотрении пространства Лобачевского (стр. \pageref{sec_spher_geometr}).
Кроме рассмотренного мысленного эксперимента с клонами, существуют также веские энергетические причины предельности скорости "Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c} ", которые будут рассмотрены чуть позже.
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \bullet} При помощи преобразований (1.13) несложно (Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \lessdot} H) проверить, что для любых двух событий следующая комбинация приращений имеет одинаковое значение для наблюдателей из различных инерциальных систем отсчета:
Величина Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta s} называется интервалом между событиями и является инвариантом преобразований Лоренца.
Если в некоторой точке Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (x_1,y_1)} произошла вспышка света, распространяющаяся в виде сферической волны (в плоскости — окружность) со скоростью Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c=1} , то за время Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta t} её радиус Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle R} станет равным Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta t} :

Следовательно, , и такие интервалы называются светоподобными. Светоподобные интервалы возникают между событиями, которые можно связать распространяющимся с фундаментальной скоростью сигналом. Светоподобный интервал равен нулю для всех наблюдателей. Поэтому сферическая световая волна будет выглядеть сферической из любой инерциальной системы отсчета.
Если Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (\Delta s)^2>0} , то интервал называется времениподобным. В частности, если Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta x=\Delta y=0} , то Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta s} равен времени Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta t} , прошедшему на неподвижных в данной системе часах. События, связанные времениподобными интервалами, могут быть соединены сигналом, распространяющимся со скоростью Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \mathbf{u}} , меньшей единицы (Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c=1} ):
где Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle {\mathbf u}^2} — квадрат скорости перемещения на Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta x} , Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta y} за время Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \Delta t} . Естественно, свойство времениподобности интервала является инвариантным свойством для всех наблюдателей.
Наконец, если Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (\Delta s)^2<0} , то интервал называется пространственноподобным. Два события, для которых Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle (\Delta s)^2<0} , нельзя связать световыми сигналами или "обычными" частицами, имеющими скорость меньше фундаментальной.
Инвариантность интервала имеет глубокий геометрический смысл. Величина является расстоянием в псевдоевклидовом 4-мерном пространстве - времени. Подробнее геометрические аспекты теории относительности мы рассмотрим в следующей главе, а сейчас сделаем ещё несколько замечаний общего характера.
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle \bullet} Объект, летящий со скоростью, сколь угодно близкой к фундаментальной скорости "Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c} ", качественно отличается от объектов, имеющих в точности скорость "Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c} ". Например, преобразования Лоренца при Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle v=c} обращаются в бесконечность. Это приводит к тому, что с объектами, имеющими скорость "Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c} ", нельзя связать инерциальную систему отсчета, наполненную наблюдателями, часами и линейками.
Наш мир вполне мог быть устроен так, что в нем вообще бы отсутствовали объекты, способные двигаться со скоростью "Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c} ". На самом деле, это было бы более естественным. В таком мире "" являлась бы предельной, но недостижимой никаким объектом скоростью.
Однако, по-видимому, наш мир устроен иначе, и в нем существуют принципиально отличные от остальных объектов сущности, движущиеся с фундаментальной скоростью. Их самым важным представителем является свет. Он дает нам возможность изучать удалённые предметы, а благодаря свету, испускаемому Солнцем, существует жизнь на нашей планете. При высокой энергии мы воспринимаем свет, как частицы (фотоны), а при малой — как волны (электромагнитное излучение).
Кроме света, могут существовать и другие сущности, движущиеся с фундаментальной скоростью. Например, до сих пор надежно не установлено, есть ли у нейтрино масса, и вполне вероятно, что это тоже "светоподобный" объект. Со скоростью света, по всей видимости, распространяется гравитационное взаимодействие, и т.д.
Принципиальное отличие светоподобных объектов от "обычных" в том, что, один раз родившись такими, они так и проживают всю свою "жизнь". Их нельзя, не уничтожив, затормозить и остановить. Они не меняют свою скорость. Речь, конечно, идет о движении в вакууме. В веществе скорость света становится меньше. Однако фактически эта скорость является усреднением скорости различных фотонов, переизлучаемых ("с задержкой") атомами вещества. Между атомами фотон движется со скоростью Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c} . "Неквантовая" картина того же процесса строится на основе суммирования множества вторичных волн, возникающих при колебании заряженных частиц вещества электромагнитной волной.
Раз возможны светоподобные объекты, качественно отличающиеся от обычных, то можно допустить и существование тахионов. Тахион — это объект, способный двигаться быстрее фундаментальной скорости "Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c} ". В принципе, как и свет, один раз таким родившись, тахион остаётся тахионом все время. Его скорость может приближаться к скорости "Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \textstyle c} " сверху, никогда её не достигая. Допущение существования тахионов приводит к очень необычным следствиям, и мы их пока рассматривать не будем.
Преобразования Лоренца << | Оглавление | >> Аксиоматика Эйнштейна |
---|
Релятивистский мир - лекции по теории относительности, гравитации и космологии