Обсуждение:Электромагнитная масса — различия между версиями
Maxim (обсуждение | вклад) (→По поводу интегралов) |
Maxim (обсуждение | вклад) (→По поводу интегралов) |
||
Строка 14: | Строка 14: | ||
::Спасибо! Есть еще один вопрос. Как был получен ответ для интеграла от нулевой компоненты тензора энергии-импульса поля? Я получил | ::Спасибо! Есть еще один вопрос. Как был получен ответ для интеграла от нулевой компоненты тензора энергии-импульса поля? Я получил | ||
::<math>\ \int T^{00}d^{3}\mathbf r = \frac{1}{4 \pi}\int \left( \frac{1}{2}\eta^{2}c^{2} - (\eta^{0})^{2}c^{2} - \gamma^{2}c^{2}\eta^{2}\right) f_{0}d^{3}\mathbf r = = \frac{c^{2}}{4 \pi}\left( \frac{1}{2} - \gamma^{2}\right)\int \eta^{2}f_{0}d^{3}\mathbf r - \frac{c^{2}}{4 \pi}\int (\eta^{0})^{2}f_{0}d^{3} \mathbf r = </math> | ::<math>\ \int T^{00}d^{3}\mathbf r = \frac{1}{4 \pi}\int \left( \frac{1}{2}\eta^{2}c^{2} - (\eta^{0})^{2}c^{2} - \gamma^{2}c^{2}\eta^{2}\right) f_{0}d^{3}\mathbf r = = \frac{c^{2}}{4 \pi}\left( \frac{1}{2} - \gamma^{2}\right)\int \eta^{2}f_{0}d^{3}\mathbf r - \frac{c^{2}}{4 \pi}\int (\eta^{0})^{2}f_{0}d^{3} \mathbf r = </math> | ||
− | ::<math>\ = \frac{c^{2}}{4 \pi \gamma}\left( - \frac{1}{2} + \gamma^{2}\right)4 \pi m_{0} - \frac{\gamma v^{2}m_{0}}{3} | + | ::<math>\ = \frac{c^{2}}{4 \pi \gamma}\left( - \frac{1}{2} + \gamma^{2}\right)4 \pi m_{0} - \frac{\gamma v^{2}m_{0}}{3} = m_{0}\gamma c^{2}\left(\frac{1}{2} + \frac{2}{3}\frac{v^{2}}{c^{2}} \right)</math>. |
::[[Участник:Maxim|Maxim]] 16:18, 12 февраля 2013 (UTC). | ::[[Участник:Maxim|Maxim]] 16:18, 12 февраля 2013 (UTC). |
Версия 21:45, 12 февраля 2013
А ведь введение электромагнитной массы - чистая формальность? Maxim 05:09, 14 ноября 2012 (UTC) .
- Всё зависит от того, что называть формальностью. Вокруг заряженной частицы есть поле. Это поле обладает энергией. Поэтому для измерения скорости заряженной частицы требуется приложить большую силу, чем для незаряженной с "той же" массой. Хотя, конечно, экспериментально отделить "механическую" массу от электромагнитной нельзя. Мы не умеем отключать и включать заряд частиц, без изменения их природы. Поэтому дело это темное. :) Сергей Степанов 20:24, 14 ноября 2012 (UTC)
- То есть, по ходу раздела вычисляется энергия и импульс зарядов, что создают поле, при помощи тензоров энергии-импульса зарядов и поля? А вначале же делается попытка найти энергию и импульс без учета тензора энергии-импульса частиц? Не совсем понимаю ту идею, что при заряд, по сути, полностью характеризуется своим полем. Можете пояснить? Maxim 19:21, 12 февраля 2013 (UTC).
По поводу интегралов
Такой вопрос: как именно в интегралах получились именно такие значения? К примеру, для последнего выражения я получил, направив вектор скорости по оси z в момент времени t = 0,
.
Можете подсказать, где есть ошибки? Основное, из-за чего и расходится мой результат с результатом , это замена . Maxim 11:27, 10 февраля 2013 (UTC).
- В определении 4-вектора , 4-вектор скорости имеет компоненты . Поэтому при t=0 и т.д. Сергей Степанов 09:28, 11 февраля 2013 (UTC)
- Спасибо! Есть еще один вопрос. Как был получен ответ для интеграла от нулевой компоненты тензора энергии-импульса поля? Я получил
- .
- Maxim 16:18, 12 февраля 2013 (UTC).