Уравнения Ито — различия между версиями
WikiSysop (обсуждение | вклад) |
WikiSysop (обсуждение | вклад) |
||
Строка 23: | Строка 23: | ||
где введено формальное обозначение <math>\textstyle \delta W = \varepsilon \sqrt{dt}</math>. В отличие от обычных дифференциальных уравнений вида <math>\textstyle dx=a(x,t)dt</math>, подобное уравнение содержит бесконечно малое изменение по времени в степени 1/2. Чтобы подчеркнуть эту необычность, мы используем символ "<math>\textstyle \delta</math>", а не "<math>\textstyle d</math>". Процесс, подчиняющийся уравнению (), называется ''непрерывным винеровским процессом''. | где введено формальное обозначение <math>\textstyle \delta W = \varepsilon \sqrt{dt}</math>. В отличие от обычных дифференциальных уравнений вида <math>\textstyle dx=a(x,t)dt</math>, подобное уравнение содержит бесконечно малое изменение по времени в степени 1/2. Чтобы подчеркнуть эту необычность, мы используем символ "<math>\textstyle \delta</math>", а не "<math>\textstyle d</math>". Процесс, подчиняющийся уравнению (), называется ''непрерывным винеровским процессом''. | ||
− | Так как мы рассматриваем предел бесконечного числа аддитивных изменений (<math>\textstyle n\to \infty</math>), то гауссовость величин <math>\textstyle \varepsilon</math> на самом деле не важна. В силу предельной теоремы сумма большого числа независимых случайных величин окажется гауссовой величиной. Важным является факт их независимости, в результате которого возникает множитель <math>\textstyle \sqrt{t}</math> | + | Так как мы рассматриваем предел бесконечного числа аддитивных изменений (<math>\textstyle n\to \infty</math>), то гауссовость величин <math>\textstyle \varepsilon</math> на самом деле не важна. В силу предельной теоремы сумма большого числа независимых случайных величин окажется гауссовой величиной. Важным является факт их независимости, в результате которого возникает множитель <math>\textstyle \sqrt{t}</math>. |
<math>\textstyle \bullet</math> Общие процессы Ито представляют собой "''деформацию''" простого винеровского блуждания при помощи функций <math>\textstyle a(x,t)</math> и <math>\textstyle b(x,t)</math>. Предположим, что снос <math>\textstyle \mu</math> и волатильность <math>\textstyle \sigma</math> — это функции времени <math>\textstyle t</math>, которые могут также зависеть от значения <math>\textstyle x</math>: | <math>\textstyle \bullet</math> Общие процессы Ито представляют собой "''деформацию''" простого винеровского блуждания при помощи функций <math>\textstyle a(x,t)</math> и <math>\textstyle b(x,t)</math>. Предположим, что снос <math>\textstyle \mu</math> и волатильность <math>\textstyle \sigma</math> — это функции времени <math>\textstyle t</math>, которые могут также зависеть от значения <math>\textstyle x</math>: | ||
Строка 29: | Строка 29: | ||
:<center><math> { \;dx = a(x,t)\,dt + b(x,t)\,\delta W \; }, </math></center> | :<center><math> { \;dx = a(x,t)\,dt + b(x,t)\,\delta W \; }, </math></center> | ||
− | где <math>\textstyle \delta W = \varepsilon \sqrt{dt}</math> — бесконечно малый винеровский "шум", а <math>\textstyle \varepsilon\sim N(0,1)</math>. Функция <math>\textstyle a(x,t)</math> называется коэффициентом ''сноса'', а <math>\textstyle b(x,t)</math> — коэффициентом ''волатильности'', квадрат которого <math>\textstyle b^2(x,t)</math> называют ''диффузией''. Локально, если функции <math>\textstyle a(x,t)</math> и <math>\textstyle b(x,t)</math> примерно постоянны, процесс Ито — это обычное аддитивное винеровское блуждание, постепенно ''изменяющее свои свойства'' | + | где <math>\textstyle \delta W = \varepsilon \sqrt{dt}</math> — бесконечно малый винеровский "шум", а <math>\textstyle \varepsilon\sim N(0,1)</math>. Функция <math>\textstyle a(x,t)</math> называется коэффициентом ''сноса'', а <math>\textstyle b(x,t)</math> — коэффициентом ''волатильности'', квадрат которого <math>\textstyle b^2(x,t)</math> называют ''диффузией''. Локально, если функции <math>\textstyle a(x,t)</math> и <math>\textstyle b(x,t)</math> примерно постоянны, процесс Ито — это обычное аддитивное винеровское блуждание, постепенно ''изменяющее свои свойства''. |
<math>\textstyle \bullet</math> Уравнение Ито () позволяет легко моделировать временную динамику произвольного стохастического процесса при помощи ''итерационной схемы'' | <math>\textstyle \bullet</math> Уравнение Ито () позволяет легко моделировать временную динамику произвольного стохастического процесса при помощи ''итерационной схемы'' |
Версия 15:52, 27 января 2010
Мартингалы << | Оглавление | >> Лемма Ито |
---|
Рассмотрим дискретную модель блуждания, в которой, кроме случайных толчков , на каждом шаге происходит постоянный сдвиг на величину . Через таких шагов результирующее значение будет равно:
Параметр называют "сносом" процесса. Если , то траектория постепенно (в среднем) будет сдвигаться вверх, иначе — вниз. Накопленное стохастическое изменение пропорционально гауссовой переменной с нулевым средним и единичной дисперсией.
Пусть длительность каждого шага — , и в течение времени их количество равно . Обозначим дисперсию за единицу времени через , а снос . В результате становится случайной функцией, которую можно записать в следующем виде:
В зависимости от значения случайного гауссового числа будет получаться то или иное в момент времени . Таким образом, процесс имеет нормальное распределение с максимумом, сдвигающимся со скоростью , и с шириной, увеличивающейся со временем пропорционально корню .
Рассмотрим теперь изменение за бесконечно малый интервал . В этом случае из () следует:
где введено формальное обозначение . В отличие от обычных дифференциальных уравнений вида , подобное уравнение содержит бесконечно малое изменение по времени в степени 1/2. Чтобы подчеркнуть эту необычность, мы используем символ "", а не "". Процесс, подчиняющийся уравнению (), называется непрерывным винеровским процессом.
Так как мы рассматриваем предел бесконечного числа аддитивных изменений (), то гауссовость величин на самом деле не важна. В силу предельной теоремы сумма большого числа независимых случайных величин окажется гауссовой величиной. Важным является факт их независимости, в результате которого возникает множитель .
Общие процессы Ито представляют собой "деформацию" простого винеровского блуждания при помощи функций и . Предположим, что снос и волатильность — это функции времени , которые могут также зависеть от значения :
где — бесконечно малый винеровский "шум", а . Функция называется коэффициентом сноса, а — коэффициентом волатильности, квадрат которого называют диффузией. Локально, если функции и примерно постоянны, процесс Ито — это обычное аддитивное винеровское блуждание, постепенно изменяющее свои свойства.
Уравнение Ито () позволяет легко моделировать временную динамику произвольного стохастического процесса при помощи итерационной схемы
Для этого выбирается малый интервал времени и начальное значение . Затем генерится нормально распределённое случайное число и вычисляется следующее значение . После чего подставляется на место , время сдвигается . В результате получается последовательность случайных чисел , , ,... Соответствующий график имеет характерную фрактальную изломанность, типичную для динамики цен финансовых инструментов или блуждающей броуновской частицы. Заметим, что на каждой итерации генерится новое случайное число .
Сходимость итерационной процедуры () имеет одну особенность. Решая обычное дифференциальное уравнение в разностях , мы предполагаем, что при заданных начальных условиях решение в момент времени будет получаться примерно одно и то же, стремясь к некоторому пределу при уменьшении временного шага . Однако для стохастических уравнений это абсолютно не так! Какой бы малый интервал мы не выбрали, за счёт случайных чисел будут получаться различные траектории , удалённые друг от друга достаточно далеко.
Сходимость алгоритма () означает, что при уменьшении должны к определённому пределу стремиться среднее значение , волатильность и функция распределения вероятностей случайного процесса .
Снос и волатильность имеют простой смысл. Если в момент времени равен , то средние значения первой и второй степени его изменения через бесконечно близкий интервал будут равны:
где усреднение проводится при условии . Это утверждение означает использование условной вероятности при вычислении среднего:
Моменты времени и явным образом указывают, когда происходит наблюдение и .
Проверим, что дискретная схема Ито () приводит к (). В бесконечно близкий к момент времени отклонение от можно записать в следующем виде:
Напомню, что и — это случайные величины, а в данном случае — константа начального условия. Среднее квадрата отклонения равно:
где , , и учтено, что , . Разделив на и устремив его к нулю, получим . В () начальное условие считается заданной константой, поэтому усредняется только случайная величина .
Несложно проверить, что моменты более высоких порядков в ведущем приближении пропорциональны и после деления на при будут стремиться к нулю.
Класс процессов, свойства которых полностью определяются только бесконечно малыми локальными изменениями первого и второго порядка (), называются диффузными.
Чтобы определить динамическое стохастическое уравнение для того или иного эмпирического процесса, можно вычислить средние () в различные моменты времени и при различных . Кроме этого, необходимо обязательно проверить, является ли процесс диффузным, т.е. стремятся ли к нулю при и . Иногда это проще, чем восстановление из данных функции четырех аргументов .
Мы часто будем записывать решения стохастических уравнений при помощи скалярной случайной величины . Важно чётко понимать смысл такой символики. Пусть в начальный момент времени нам известно, что . После этого начинает изменяться . В каждый фиксированный момент времени величина случайна. При помощи того или иного функционального преобразования можно выразить случайную величину с одним распределением через случайную величину с другим. Поэтому:
означает, что случайная величина в момент времени выражается, например, через гауссову случайную переменную , а, следовательно, плотность вероятности можно получить некоторым преобразованием из нормального распределения. При помощи () легко вычисляются разнообразные средние случайного процесса, так как свойства хорошо известны.
Таким образом, в произвольный фиксированный момент времени — это случайная величина, свойства которой определяются при помощи и значения . Время изменяется, и изменяются её свойства. В результате случайная величина превращается в процесс.
Если мы рассматриваем другой момент времени, мы должны использовать другую случайную величину . Пусть процесс наблюдается после в последовательные моменты времени и , тогда:
Первое уравнение () является решением в момент времени . Величина — детерминированная константа, задаваемая начальными условиями. В противоположность ей — случайная величина. Её случайность определяется . Первое равенство уравнения () имеет аналогичный смысл. Однако — это новая случайная величина. Заметим, что она, вообще говоря, статистически зависит от , так как знание значения (и, следовательно, ) даёт нам дополнительную информацию о возможных значениях . В частности, считая, что задано "начальное условие" , мы можем записать второе равенство в (). Величина определяет "случайность" после момента времени , и, следовательно, она независима от . Второе равенство в () имеет смысл функциональной связи между случайными величинами и , . Заметим, что функция во всех соотношениях (), () одна и та же, а все случайные величины имеют одинаковое распределение .
Мартингалы << | Оглавление | >> Лемма Ито |
---|
Стохастический мир - простое введение в стохастические дифференциальные уравнения