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Resilien
e of VolatilitySergey S. Stepanov ∗†November 27, 2009Abstra
tThe problem of non-stationarity in �nan
ial markets is dis
ussed and related to the dynami
nature of pri
e volatility. A new measure is proposed for estimation of the 
urrent asset volatility.A simple and illustrative explanation is suggested of the emergen
e of signi�
ant serial auto
or-relations in volatility and squared returns. It is shown that when non-stationarity is eliminated,the auto
orrelations substantially redu
e and be
ome statisti
ally insigni�
ant. The 
auses ofnon-Gaussian nature of the probability of returns distribution are 
onsidered. For both sto
k and
urren
y markets data samples, it is shown that removing the non-stationary 
omponent substan-tially redu
es the kurtosis of distribution, bringing it 
loser to the Gaussian one. A statisti
al
riterion is proposed for 
ontrolling the degree of smoothing of the empiri
al values of volatility.The hypothesis of smooth, non-sto
hasti
 nature of volatility is put forward, and possible 
ausesof volatility shifts are dis
ussed.1 Introdu
tionNon-stationarity is arguably the most 
hara
teristi
 feature of �nan
ial markets. It is generally a
-
epted that statisti
al parameters of pri
e dynami
s vary with time. This fa
t is unpleasant bothfor resear
hers and pra
titioners, be
ause any dis
overed regularities and elaborated trading systemsqui
kly lose their relevan
e as time passes. The best solution to the problem of non-stationarity wouldbe to in
lude it into a probabilisti
 model of market operation.One of the most important 
hara
teristi
s of returns of a �nan
ial instrument is its volatility.There is no doubt that volatility varies over time, and this phenomenon is the subje
t of voluminousliterature, for example [1℄, as well as a more re
ent 
olle
tion in [2℄. There are 'quiet' periods ofmarket behavior and periods of in
reased volatility. One 
an say that volatility 
hara
terizes themarket 'temperature', the degree of its emotional tension. Fore
asting future values of volatility isextremely important; it plays a 
ru
ial role, among other issues, in determining the pri
ing of optionsand assessing the risk for portfolio investors (see [3℄ for an extensive review). Understanding the
auses and nature of non-stationary volatility would also lead to a deeper insight into the essen
e ofthe �nan
ial market pro
esses. Various models were suggested, en
ompassing su
h diverse �elds astheory of 
haos applied by [4℄, and multi-agent systems studied by [5℄. This task be
ame espe
iallyrelevant in re
ent years, during the unfolding �nan
ial disturban
es, as well as dramati
 events ofInternet bubble (relevant dis
ussion 
an be found in [6℄).The term volatility 
omprises at least four di�erent meanings: 1) the emotional 
hara
teristi
 of themarket; 2) sample mean square deviation of logarithmi
 returns; 3) the 'true' unobservable varian
e ofthe underlying distribution of returns; and 4) the implied volatility in option 
ontra
ts. In this paper,we use the term volatility in the se
ond and third senses, whi
h are usually referred to as realizedand latent volatility, respe
tively. We refer the reader to reviews by [7℄ and by [8℄ for good overviewof the �eld. The 
hoi
e of robust volatility estimator is important for produ
ing 
orre
t inferen
esfrom the available data (see [9℄). One of the questions we fo
us on in our resear
h is, whi
h 
hoi
eof estimator of sample volatility leads to a minimum error for a 
ertain model of a random pro
ess.'True' volatility is, of 
ourse, non-observable, and the question of its nature is further 
ompli
ated bythe non-stationary nature of the markets.
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h, Ukraine.
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The generally a

epted approa
h is to 
onsider the volatility as a sto
hasti
 variable (see, forexample, [10℄, [2℄ and the 
olle
tion in [11℄). One of the 
hief motivations for this is the presen
e ofhigh auto
orrelations in volatility and squared returns, as dis
ussed in [12℄. Compared to the near-zeroauto
orrelations in logarithmi
 returns, the dete
tion of su
h long-memory pattern 
reates strikingimpression.In the probabilisti
 models with variable volatility, the pri
e x(t) random pro
ess is des
ribed ei-ther by dis
rete or 
ontinuous equations, parameters of whi
h are random variables. In this 
ontext,GARCH(p, q) model �rst introdu
ed by [13℄ gained wide popularity, as well as its various generaliza-tions (see [14℄). In this 
ase, the timeline is divided into �nite time intervals (lags) of duration τ , andthen only '
losing' pri
es of these intervals are 
onsidered xk = x(k · τ), where k = 1, 2... is an integer.Logarithmi
 returns rk = ln(xk/xk−1) are independent random variables, with variable volatility σk,the square of whi
h linearly depends on the previous squared returns and volatilities:
rk = σk εk, σ2

k = α0 +

p
∑

i=1

αi σ2
k−i +

q
∑

i=1

βi r2
k−i. (1)Here and below εk is un
orrelated normalized random (i.i.d.) pro
ess with zero mean and unit varian
e:

εi = 0, ε2
i = 1, εi · εj = 0. A line over a symbol, as usual, denotes the average of all the possiblerealizations of εi.In the 
ontinuous framework, the sto
hasti
 Ito's equation is widely used for both pri
e andvolatility dynami
s. The pri
e is modeled (for an example, see a paper by [15℄) by the ordinarylogarithmi
 walk, and volatility is des
ribed by the Ornstein�Uhlenbe
k equation:

dx

x
= µdt + σ(t)δW1, d lnσ = β · (α − lnσ) dt + γδW2, (2)where δW1, δW2 are un
orrelatedWiener variables δW = ε

√
dt. Indeed, the term 'sto
hasti
' volatilityis usually reserved for this 
lass of models, although we here use in a somewhat broader sense, to in
ludethe GARCH-type models.Sometimes, both in the dis
rete and the 
ontinuous models, one or more 'hidden' sto
hasti
 vari-ables are introdu
ed, and volatility is 
onsidered as a fun
tion of su
h variables. Other, sometimesrather sophisti
ated approa
hes, exist in the literature (see [16℄ as an example). What unites themall is the probabilisti
 des
ription of the lo
al dynami
s of volatility (either dis
rete or 
ontinuous).There is an extensive body of empiri
al resear
h devoted to testing of predi
tive power of GARCH-type sto
hasti
 models over the last twenty years, surveyed in [17℄, [11℄, as well as the dis
ussionof 
orre
t methodology for fore
ast estimation [10℄. In general, 
ertain skepti
ism regarding thepredi
tive 
apabilities of su
h models is present in ongoing resear
h. Re
ently, 
ertain 
onsiderationswere expressed that explain the persisten
e of auto
orrelations of positively determined variables asthe result of their non-stationarity; [18℄, [19℄ and [20℄ are just a few examples of related resear
h.The e�e
t of non-stationarity is also dire
tly related to the problem of sear
hing for the probabilitydistribution of returns of �nan
ial instrument. It is well known that this distribution is non-Gaussian;it has heavy tails and, 
onsequently, manifests high kurtosis and high probability of ex
essively largeor small returns. Starting with the seminal work by [21℄, this fa
t has gradually be
ome a standardin �nan
ial engineering (see [22℄ for a modern view upon the subje
t). However, most approa
hesto 
onstru
ting the probability distribution of random variables impli
itly suppose their stationarity,whi
h we do not observe at real �nan
ial markets.The idea that non-stationarity in the random pro
ess 
an 
ause the non-Gaussian behavior ofreturns distribution goes ba
k as far as the 
lassi
al work by [23℄; it was therein tested and was not
on�rmed. Nevertheless, the question about the type of distribution and the e�e
t of non-stationarityrequires further 
areful 
onsideration.In this paper we provide the arguments in support of the hypothesis that volatility σ(t) is a smooth,rather than sto
hasti
, fun
tion of time. The explanation of origin of high long-term auto
orrelationsand the non-Gaussian nature of returns distribution will be given. Our hypothesis also implies thatthe volatility manifests the property of resilien
e: under the impa
t of irregular, relatively rare and
ompletely unpredi
table sho
ks to the market, it gradually deforms; after su
h in�uen
es 
ease toa
t, the relaxation pro
ess takes over and volatility gradually de
reases.2



The remainder of the paper is organized as follows. First, we dis
uss a new measure of volatilityand demonstrate its e�e
tiveness. After that, the empiri
al stylized fa
ts of auto
orrelations asso
iatedwith the volatility are listed, and a simple non-stationary model, in whi
h su
h properties naturallyarise, is proposed. A very 
lear graphi
 representation is provided for the me
hanism of appearan
eof auto
orrelations, and a simple mathemati
al formalism for performing the ne
essary 
al
ulations isproposed.The eviden
e that su
h a me
hanism is a
tually realized in �nan
ial markets is provided by 
al-
ulation of the auto
orrelation fun
tion (ACF) for two modi�
ations of original series; namely, theauto
orrelations are vanishing for both the �rst di�eren
es of volatility of 
onse
utive days, and forthe residual series obtained by elimination of its smooth part σ(t). The empiri
al tests of these fa
tsare 
arried out utilizing sample data of both sto
k market and ex
hange rate dynami
s.Next, we show that normalizing the returns series by σ(t) leads to signi�
ant redu
tion in kurtosisof distribution, in some 
ases restoring it to the normal form. Statisti
al 
riteria for 
ontrolling thedegree of data smoothing are elaborated. We 
onsider the arguments 
on
erning the lo
al 
onstan
y of'true' volatility. In Con
lusion, a number of inferen
es about the possible properties of the dynami
sof volatility are formulated. Various te
hni
al details are 
ompiled in self-
ontained Appendi
es, whi
h
omplement and detail the 
al
ulations presented in the body of the paper.2 Measurement of volatilityHistori
al pri
es for various �nan
ial instruments are usually available as dis
rete time series, with a
ertain period of time (lag) between 
onse
utive points. Most widely available are data with dailylags, hourly lags 
an be observed less frequently, and minute lags are even more seldom. In addition tothe 
losing pri
e Ct (the latest value within a lag), other 
ommonly utilized parameters are: openingquotes Ot (�rst pri
e of a lag), maximal Ht and minimal Lt pri
e values. By means of these four pri
epoints one 
an 
onstru
t three independent relative values, whi
h we will 
all the basis of a lag.
H

L

C

O

a
h

lFigure 1: Chara
teristi
s of volatility ht = Ht − Ot

lt = Ot − Lt (3)
rt = Ct − OtThe height h of pri
e as
ent and the depth of pri
e des
ent l are both positive values. Out of thesemeasures the amplitude of pri
e range a = h+ l 
an be de�ned (see, for example [24℄ and [25℄ for earlyexamples of its use). The asset return r 
an be both positive and negative.If one 
onsiders the models of additive Wiener random walk dx = µ dt + σ δW , the values

{Ot, Ht, Lt, Ct} are asset pri
es. For the logarithmi
 random walk dx/x = µ̃dt + σ̃δW they arelogarithms of pri
e values lnx. Thus, in the latter 
ase, for example, the range at would be equal tothe logarithm of the ratio of maximum pri
e to minimum pri
e at = ln(Ht/Lt), the 
orresponding rtequal to the logarithmi
 return rt = ln(Ct/Ot), and so on.We de�ne volatility σ of a lag with duration T as an average of asset return r deviation from themean over a su�
iently large number of lags: σ2 =
〈

(r − r̄)2
〉. If volatility σ is 
onstant, the values ofpositive entities {h, l, |r|, a} in 
ertain sense serve as its measure. The higher is the market volatility,the more probable are their high values. In parti
ular, in absen
e of drift (µ = 0), their men valuesare proportional to volatility: ā = 1.596 · σ, h̄ = l̄ = |r| = 0.798 · σ (see Appendix A).However, the informational 
ontent of ea
h parameter, and of their possible 
ombinations, varies.The distributions of the probability density for P (a) and P (h), P (l), P (|r|), in the 
ase of Wienerpro
ess, are plotted in Fig. 2 (dotted lines mark the distributions' mean for σ = 1).
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omponentsAs we see, among the basis 
omponents {a, h, l, |r|} only the range a has a su�
iently narrowmaximum around the mean value. The density of probability of the other three values are stri
tlyde
reasing fun
tions, whi
h allows for h, l and |r| to take, with high probability, values 
lose to zero.The range a, on the 
ontrary, avoids going to zero, the probability that a < 0.75σ being as low as0.002. Indeed, it often happens that the market 
loses with a near-zero 
hange in pri
e |r| ∼ 0, whileits volatility during the day was signi�
ant. In general, the narrower the distribution of probabilityfor volatility measure, the better is this measure. For some positively determined value v, the relativedegree of distribution narrowness 
an be 
hara
terized by a ratio σv/v̄, where σ2
v = (v − v̄)2 is meansquared deviation from the mean v̄. For the range we have σa/(̄a) = 0.30, whi
h signi�es more thantwi
e as narrow distribution peak than, for instan
e, for the height (σh/h̄ = 0.76). A natural questionarises: is there a 
ombination of the basis values f(h, l, r) that has a narrower distribution than thepri
e range a? This topi
 is the subje
t of extensive resear
h (see e.g. [24℄,[25℄, [26℄,[27℄, [28℄).In the present arti
le we de�ne a simple, but e�
ient, modi�
ation of the pri
e range, whi
h ismotivated as follows. If the pri
e dynami
s within the lag is a

ompanied by a signi�
ant trend |r| 6= 0(whether it is going up or down), the volatility may appear lower than for the same pri
e range, butin the absen
e of trend (|r| = 0). Therefore there are good reasons to de
rease the value of the range,as a measure of volatility, in the 
ase when |r| is large. We a
hieve this by introdu
ing the followingvolatility estimator, whi
h we 
all modi�ed pri
e range (see Appendix B):

v = a − |r|
2

. (4)Its statisti
al parameters � mean (av), standard deviation (si), skewness (as) and its kurtosis (ex) for
σ = 1 are listed in Table 1.Table 1: Statisti
al parameters of probability distributions for |r|, a and v.

av si as ex si/av

|r| 0.798 0.603 1.00 0.87 0.76
a 1.596 0.476 0.97 1.24 0.30
v 1.197 0.300 0.53 0.26 0.25One 
an see that the relative width of the distribution of modi�ed range σv/v̄ = 0.25, whi
h isbetter than that of simple range a. The statisti
al parameters also show that the distribution for v ismore symmetri
al around the maximum and has a lower kurtosis than a. The form of distribution for

P (v) together with P (a) (dotted line) are plotted in Fig. 3, and there we also provide the expressionsfor the average v and its square for the 
ase of the Brownian walk. Thus, the modi�ed pri
e rangeprovides a better measure of volatility than the simple range, and signi�
antly better than absolutelogarithmi
 returns. In Appendix B, we 
ompare the modi�ed range with several other ways ofvolatility measurement utilized by other authors. Providing for the same or lower error of volatilityestimation, the measure v has a signi�
antly more simple de�nition, and is unbiased for the smallnumber of lags, so we will use it extensively throughout this paper.
4
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· σ2.Figure 3: Probability densities P (v), P (a) and mean values for v and v23 Intraday volatilityWe shall demonstrate the e�e
tiveness of modi�ed amplitude of range on the available realized volatil-ity data. Here we 
onsider 15-minute quotes at the Forex market for the period from 2004 to 2008for EURUSD 
urren
y pair. We shall make them aggregated into daily points, 
al
ulating, besideminimum and maximum meanings, intraday volatility basing on logarithmi
 returns of 15-minutelags:
σ2 =

n

n − 1

n
∑

i=1

(ri − r̄)2. (5)During a day, we have n = 96 = 4 · 24 15-minute lags. Multiplier n in (5) turns 15-minute volatilityinto the daily value. The evolution of intraday volatility is given in the Fig. 4 (data for 1250 tradingdays, ex
luding weekends and major holidays):
Figure 4: Intraday volatility of EUR/USD rateOne 
an observe that sin
e the fall of 2008, volatility of the 
urren
y market, as well as of other�nan
ial markets, has in
reased dramati
ally, due to the worsening �nan
ial 
risis. However, even inthe pre-
risis period, volatility has a 
lear-
ut non-stationary 
omponent.It is natural to assume that realized volatility obtained from a sample of n = 96 
hara
terizes the'true' volatility better than does a daily basis of three values {h, l, r} (see [29℄, [30℄, [31℄) even thoughthere are various high-frequen
y e�e
ts that one has to take into a

ount (dis
ussed in detail by [32℄,[33℄, and [34℄). To �nd a more robust measure of volatility, based on the basis, one should look fora value stronger 
orrelated with the intraday volatility. Let us 
hart the s
atter plots of dependen
eof daily values of vt, at and |rt| on intraday volatility σt (EUR/USD for period 2004-2008, Fig. 5).It 
an be easily seen that vt and at are substantially more 
orrelated with σt, than with |rt|. Thetransition from logarithmi
 range a to modi�ed range v makes the 
orrelation more pronoun
ed, butthe di�eren
e is not signi�
ant.Similar results are observed for other 
urren
ies. The slope of regression lines vt/σt and at/σt forsix 
urren
y pairs are given in Table 2. In ea
h 
ase the error of linear approximation for v is lowerthan for a, and signi�
antly lower than for |r|.

5



Figure 5: Dependen
ies of v(σ), a(σ) and |r|(σ)Table 2: Slope of regression lines vt/σt and at/σt for six pairs of 
urren
ieseurusd gbpusd usd
hf usdjpy usd
ad audusd average
〈v/σ〉 1.263 1.260 1.289 1.251 1.241 1.243 1.258
〈a/σ〉 1.671 1.665 1.692 1.640 1.621 1.660 1.658

〈|r|/σ〉 0.817 0.809 0.807 0.776 0.761 0.834 0.801Despite the noti
eable variation, the values of v/σ,a/σ and |r|/σ are 
lose to their theoreti
alvalues for Wiener random walk, 1.197, 1.596 and 0.798, respe
tively. Nevertheless, we must keep inmind that, for example, the expression v/σ = 3/
√

(2π) holds only for the Brownian random walkwith normal distribution of returns. In reality, this 
ondition is not fully satis�ed, so the ratio v/σmay be equal to some 
onstant di�erent from 3/
√

(2π), and its exa
t value we will dis
uss below.Another indi
ation of signi�
an
e of modi�ed pri
e range are auto
orrelation 
oe�
ients that willnow be the obje
t of our interest:
ρs(v) = cor(vt, vt−s) =

〈(vt − v̄)(vt−s − v̄)〉
σ2

v

, (6)where the averaging is 
arried out for all the observed values of vt = v1, .., vn. For interdaily ratesof EUR/USD (2004-2008) we obtain (as shown in Fig. 6) the auto
orrelation 
harts as a fun
tion ofshift (in days) parameter s. As 
an be observed from Figure 6, auto
orrelations of intraday volatility
ρ1(σ) = 0.77 are the highest, followed by modi�ed pri
e ranges ρ1(v) = 0.54, then by simple range
ρ1(a) = 0.47, and the weakest 
orrelations are those of absolute logarithmi
 returns ρ1(|r|) = 0.11.

Figure 6: Correlograms of volatility for EURUSDHigh auto
orrelations appear for a variety of �nan
ial instruments and are quite an intriguing fa
t([35℄ provides the list of other so-
alled stylized fa
ts, as well as an ex
ellent 
ompilation of referen
esto relevant resear
h). In 
ontrast, the �rst auto
orrelation 
oe�
ient of EUR/USD rate returns isequal to ρ1(r) = −0.02, whi
h 
orresponds to the absen
e of 
orrelation, if one takes into a

ountthat 2σ rule gives an error band of 0.06 (for 1250 trading days). This unpredi
tability of the marketreturns is one of manifestations of its market e�e
tiveness.However, the situation is quite di�erent for absolute returns, and even more so for volatilities,whi
h have slowly de
aying long-range ACF fun
tion. Basing on this fa
t a huge number of sto
hasti
models have been 
onstru
ted, whi
h 
laim the ability to predi
t the future values of volatility (see6



[8℄ for a re
ent review). The majority of these models have empiri
al nature, and do not explain the
auses of high auto
orrelations. One of our tasks in the present paper will be to propose su
h anexplanation4 Empiri
al features of auto
orrelationsWe now extend our analysis by outlining a number of features of auto
orrelation 
oe�
ients pertinentfor volatility.1. Auto
orrelations de
ay monotoni
ally and very slowly.This is a well-known result (see [36℄, [37℄). A number of papers were devoted to attempts on deter-mining the fun
tional dependen
e of auto
orrelation 
oe�
ients from the shift parameter s. Usually,auto
orrelations are approximated by a power law s−µ, where the parameter µ turns out to be small.2. The longer is the time interval, the higher are auto
orrelations.Let us 
onsider the behavior of ACF for daily modi�ed range v = a−|r|/2 for S&P500 sto
k index forthe period from 2001 to 2006. We split this interval into two three-year periods, namely, from 2001to 2003 and from 2004 to 2006. During the �rst one there were n = 752 trading days, while duringthe se
ond - n = 755. We 
al
ulate auto
orrelation 
oe�
ients separately for ea
h period, as well asthe auto
orrelation of 
ombined data series.The resulting auto
orrelograms are represented in Fig. 7 (the 
ombined ACF is repeated on bothplots). As 
an be noti
ed, the summarized 
orrelogram goes above the 
orrelograms of ea
h period.However, this behavior is not observed for any asset in any 
ir
umstan
es, and the 
onditions thatare required for this to o

ur will be 
lari�ed during further dis
ussion below.
2001-2006 2001-2006
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0 10 20 30 40 50Figure 7: Correlograms of S&P500 for di�erent time periodsHere and below the dotted horizontal lines in the 
orrelograms mark the double standard errorband ±2/
√

(n), where n is the number of points involved into the 
al
ulation. Table 3 shows themain statisti
al parameters of daily logarithmi
 returns of S&P500 index for di�erent periods. InTable 3: Main statisti
al parameters of daily logarithmi
 returns of S&P500 indexPeriod n r σ as ex p0, % p1, % ρ1(v)2004-2006 755 0.032 0.659 -0.02 0.25 55.9 69.4 0.162001-2003 752 -0.023 1.376 0.20 1.27 48.9 71.4 0.422001-2006 1507 0.005 1.078 0.15 2.84 52.4 75.7 0.55addition to the mean (r), daily volatility σ, skewness(as) and kurtosis(ex), we also present here theper
entage of positive returns p0 = p(r > 0) and a share of returns falling within one sigma of themean: p1 = p(|r − r̄| < σ).Table 3 illustrates the fa
t that when the market is 
alm (2004-2006: σ = 0.659%), the distributionof asset returns is 
lose to normal (ex = 0.25). However, the normality deteriorates signi�
antly after7



Table 4: Volatility auto
orrelation 
oe�
ients for EUR/USD ex
hange rate, with and without 2008Q4data Period n ρ1(σ) ρ1(v) ρ1(a) ρ1(|r|)2004Q1 .. 2008Q4 1302 0.80 0.54 0.47 0.112004Q1 .. 2008Q3 1215 0.51 0.25 0.16 0.01we extend the time interval under 
onsideration. Simultaneously the auto
orrelation of volatilitiesstarts to in
rease ρ1(v) = cor(vt, vt−1).A similar situation 
an be observed in the foreign ex
hange market. Dis
arding the data fromre
essionary fourth quarter of 2008 redu
es signi�
antly the auto
orrelation 
oe�
ients of data seriesrelated to the volatility of EUR/USD pair, as illustrated in Table 4. We note that dropping the2008Q4 data redu
es the number of days for whi
h the auto
orrelation 
oe�
ients are 
al
ulated bymerely 7%.3. S
atter plot of volatility has a '
omet-like' shape.Let us 
onsider the s
atter plots for modi�ed range parameter {vt−1, vt}, illustrating the 'existen
eof memory' of volatility for the three periods of S&P500 index, dis
ussed above. As 
an be seen from
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0 3
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0
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Figure 8: Dependen
e diagrams at(at−1), S&P500Fig. 8, data points �ll the region of a distin
tive '
omet-like' shape, its tail fanning out into the positivevalues of both axes. Naturally, the higher the auto
orrelation 
oe�
ients are, the more distin
tive isthe form of the dot 
loud.The shape of region σt = f(σt−s) is 
ompletely independent of the shift s and the utilized volatilitymeasure. For EUR/USD 
urren
y pair over 2004-2008 period, we have the s
atter plots of intradayvolatilities, obtained from 15-minute lags, are presented in Fig. 9. There, three values of the shiftare presented: one day (s = 1), one week (s = 5), and two weeks (s = 10). It 
an be seen that theform of '
omet-like' shape doesn't 
hange qualitatively, but rather spreads out gradually along withthe de
rease of auto
orrelation 
oe�
ient.
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Figure 9: Dependen
ies σt(σt−s), s = 1, 5, 10, EURUSD
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5 When auto
orrelations do not de
ayA
tually, slowly de
reasing auto
orrelation 
oe�
ients as a fun
tion of the shift parameter, ought tobe a 
ause for alert. There are very simple models that exhibit similar long-
orrelations e�e
ts withoutemploying the notion of sto
hasti
 volatility (see [19℄ for one ingenuous example).Let us 
onsider, for example, an ordinary logarithmi
 walk:
dx

x
= µ dt + σ δW. (7)and simulate 20 years (5000=20·250 trading days) of pri
e evolution; volatility is de�ned as 
onstantequal to σ1 = 1% for the �rst 10 years, and 
hanges to another 
onstant value of σ2 = 2% in the se
ondhalf of the period. Wiener's pro
ess is represented as δW = ε

√
dt, where ε is normally distributedrandom variable with zero mean and unit varian
e. We 
hoose one se
ond dt = 1/(24 · 60 · 60) as asmall time interval dt.The dynami
s of daily values of the modi�ed pri
e range vt = at − |rt|/2 during '
riti
al' 10th and11th years has the shape plotted in Fig. 10 (where time is in 'days').

1

2

2250 2500 2750

t /1.197

tFigure 10: Two years of random walk around the 'swit
h' in volatilitySu
h data series with a one-time sho
k non-stationarity exhibits noti
eable auto
orrelation 
oe�-
ients for the absolute returns (plotted in the se
ond panel of Fig. 11), and even higher auto
orrelationsfor the pri
e range (third panel).
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Figure 11: Auto
orrelations of returns, absolute returns and modi�ed pri
e range.The de
ay of ACF is very slow with the in
rease of shift parameter s. In 
ontrast to |rt| and vt,the 
orrelations of pri
e returns rt (the �rst plot above) lie within two standard errors, and thus arepra
ti
ally absent.Therefore, 
orrelation regularities arise in the 
onsidered toy model, despite the statisti
al inde-penden
e of the two 
onse
utive days. We stress that not only the returns r are independent, butso are the absolute returns |r|, and amplitudes of pri
e v. If volatility were 
onstant for the wholemodeled period, all the 
orrelograms ρs(|r|) and ρs(v) would be equal to zero. It is when we introdu
enon-stationarity that the pi
ture is qualitatively 
hanged.The 
ause of this e�e
t 
an be easily understood. Fig. 11 
ontains three s
atter plots that representvalues of logarithmi
 returns, their absolute values and modi�ed pri
e ranges of two 
onse
utive daysduring the �rst de
ade of evolution with 
onstant volatility σ = 1%. In the �rst plot, the dots form9
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t|r|t

|r|t-1Figure 12: First de
ade of the modelan almost symmetri
al 
loud, and the 
orrelation is evidently equal to zero. In the se
ond and thirdplots, there is symmetry is redu
ed, in agreement with the 
orresponding symmetry features of theprobability densities P (|r|) and P (v). However, due to the independen
e of 
onse
utive days, the
orrelation 
oe�
ient is equal to zero. For example, if x = vt, and y = vt−1, the independen
emeans that the joint density of distribution is equal to the produ
t of probability densities P (x, y) =
P (x) · P (y). Therefore, for any distribution the 
ovarian
e will be equal to zero: (x − x̄)(y − ȳ) = 0.It is important to emphasize the fa
t that for the returns rt the 
enter of the data 
loud is lo
atedat the origin of 
oordinates, whereas for the positively determined values |rt| and vt it is displa
ed tothe right and up to the region of positive values.Now let us add the dots 
orresponding to the data of the se
ond de
ade to the diagram (seeFig. 13). For logarithmi
 returns (�rst diagram) two 
louds with the same 
enter r̄ = 0 overlay. The
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-5 t-1rt-1
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50

5

0

50

5

0

t|r|t

|r|t-1Figure 13: The 
omplete data of the modelresulting 
loud remains symmetri
al, that is why the auto
orrelation is still equal to zero. In the 
aseof the pri
e range (third diagram), there are two non-
on
entri
 
louds, one of whi
h 
orresponds to
σ1 = 1% and se
ond one to σ2 = 2% (we remind that v̄ = 1.197σ). The overlapping area between the
louds dithers, and a �gure of a 
hara
teristi
 
omet-like shape appears as a result (the upper 
loudis larger). Using the least-squares 
riterion, one 
an draw a line through it, the slope whi
h will beproportional to the 
orrelation 
oe�
ient.The shape of diagrams do not 
hange if we plot the data for the 
ase of two days' shift {vt, vt−2}.Indeed, with the ex
eption of few transitional points around the volatility jump, all the data for ea
hde
ade will still be 
lustered in its 
loud.The situation with the se
ond diagram for the absolute returns {|rt−1|, |rt|} is somewhat more
ompli
ated. Visually, it is not qualitatively di�erent from the 
orresponding one for the �rst de
ade;nevertheless, the non-zero 
orrelation is present. In order to understand this phenomenon, it isne
essary to extend the standard statisti
al relations to the 
ase of non-stationary data.6 Non-stationary statisti
sLet the distribution parameters of a random variable x vary smoothly with time. If we 
al
ulate themean of x over a given time interval T without taking the above mentioned statement into a

ount,10



we will a
tually obtain the following expression for x̄:
x̄ = 〈x̄(t)〉 =

1

T

T
∫

0

x̄(t) dt, where x̄(t) =

∞
∫

−∞

x · P (x, t) dx. (8)In other words, in every �xed moment of time we 
al
ulate a lo
al mean x̄(t), and then average allsu
h lo
al mean values over the time interval T (denoted by angle bra
kets). Similarly, let us de�nelo
al varian
e as:
σ2(t) =

∞
∫

−∞

(x − x̄(t))2 · P (x, t) dx = x2(t) − x(t)2. (9)The varian
e 
al
ulated on all dataset will be equal to:
σ2 = (x − x̄)2 =

〈

x2(t)
〉

−
〈

x(t)
〉2

=
〈

σ(t)2
〉

+
〈

x(t)2
〉

−
〈

x(t)
〉2

, (10)where the angle bra
kets, as above, denote averaging over time interval T . Thus, σ2 is made up oftwo distin
t parts, namely, it is a sum of weighted lo
al varian
e 〈

σ2(t)
〉 and time varian
e of mean(se
ond and third terms in equation (10)).In the spe
ial 
ase of parametri
 non-stationarity, xt 
an be represented as xt = µ(t) + σ(t) · ηt,where ηt represents stationary independent random pro
ess with zero mean and unit varian
e (η = 0,

η2 = 1). The mean value of xt is equal to 〈

µ(t)
〉, and varian
e is given by: 〈

σ(t)2
〉

+
〈

µ(t)2
〉

−
〈

µ(t)
〉2.Let us now 
onsider two lo
ally independent variables x and y. Their independen
e means thatthe density of joint probability in any �xed moment of time t de
omposes into produ
t P (x, y, t) =

P (x, t) · P (y, t), and
x · y (t) = x(t) · y(t). (11)However, when averaged over all data, these variables 
ease being independent. Indeed, the time meanof the produ
t x · y:

x · y =
1

T

T
∫

0

∞
∫

−∞

x · y P (x, y, t) dxdydt =
1

T

T
∫

0

x̄(t)ȳ(t) dt = 〈x̄(t) · ȳ(t)〉 , (12)and this expression is not equal to the produ
t of time means: x ·y = 〈x̄(t)〉 · 〈ȳ(t)〉. In general, if lo
almeans x̄(t), ȳ(t) are non-zero, the 
orrelation 
oe�
ient is non-zero as well. As we observed from theexample of the previous se
tion, the mean of returns in ea
h de
ade was equal to zero, that is why theauto
orrelation did not arise for r. In 
ontrast, for the positively determined variables |r| and a themean is non-zero, and auto
orrelation is present, despite the independen
e of two 
onse
utive days.Thus, lo
ally independent variables that have similar long-term non-stationarity, be
ome depen-dent when we take into a

ount their evolution in time. However, su
h dependen
e does not havesto
hasti
 nature, but rather 'deterministi
', smooth one, related to time syn
hronization.For example, if the non-stationarity of volatility has a shape of a step-fun
tion with equal durationof both periods, the mean and varian
e of the whole dataset are equal to:
x̄ =

x̄1 + x̄2

2
, σ2 =

σ2
x1 + σ2

x2

2
+

(x̄1 − x̄2)
2

4
, (13)where x repla
ed either |r| or v, and statisti
al parameters of the �rst and se
ond de
ades are given by

x̄1, σx1, and x̄2, σx2. If the shift in the 
al
ulation of the auto
orrelation 
oe�
ient is small 
omparedto the length of T , in the �rst approximation one 
an negle
t the boundary e�e
ts, and assume that
x = vt and y = v(t − 1) are independent. Their 
ovarian
e is equal to:

x · y − x · y =
x̄1ȳ1 + x̄2ȳ2

2
− x̄1 + x̄2

2
· ȳ1 + ȳ2

2
=

(x̄1 − x̄2)(ȳ1 − ȳ2)

4
. (14)As x̄i = ȳi, we re
eive for the auto
orrelation 
oe�
ient:

cor(x, y) =
(x̄1 − x̄2)

2

(x̄1 − x̄2)2 + 2(σ2
x1 + σ2

x2)
. (15)11



We 
an see that su
h '
orrelation' for non-stationary data appears only for variables with di�erentmeans. For v and |r|, mean and varian
e are proportional to volatility of logarithmi
 returns x̄ = ασ,
σx = βσ. For absolute returns, α = 0.795, β = 0.605, while for the modi�ed pri
e range α = 1.197,
β = 0.300. If volatility of the market 
hanges, so do the mean values of positively determinedvariables v and |r|. For our model, the volatility of logarithmi
 return is in
reased by fa
tor of 2, andthe 
orresponding 
orrelation is given by 1/(1 + 10(β/α)2). For absolute returns this is equal to 0.15,and for the modi�ed range, 0.61. This agrees exa
tly with what we have observed in the numeri
alexperiment.In general 
ase, in order to obtain the auto
orrelation 
oe�
ients as fun
tion of shift s, we shoulduse their de�nition as sums. However, the presentation in 
ontinuous time is more 
ompa
t. Let usassume T and shift s to be 
ontinuous variables. In 
ase of n lags with duration of τ ea
h we have
T = nτ , and s = kτ , where k ≪ n. Let us 
onsider a positively determined variable σt, related tovolatility, whi
h is modulated by a non-stationary 
omponent σt = σ(t) · θt, where θt is a stationaryrandom variable with a unit mean. For example, for the modi�ed amplitude, θt = vt

√
2π/3. Sin
erandom variables θt at di�erent times are non-
orrelated and positively determined, we obtain that

θt · θt−s is equal to 1 for s 6= 0, and to θ2 for s = 0. Let us de�ne the 
ovarian
e for the 
ase s 6= 0 asfollows:
γs(σ) = 〈σt · σt−s〉 − 〈σt〉2 =

1

T − s

T
∫

s

σ(t)σ(t − s) dt −





1

T

T
∫

0

σ(t) dt





2

. (16)We note that this is not the only possibility in the 
ase of a �nite sample with duration T . In any
ase, we require that the 
ovarian
e(16) is equal to zero if σ(t) = const. The varian
e of a positivevariable σt equals to γ0 = θ2
〈

σ2(t)
〉

−〈σ(t)〉2. A

ordingly, the auto
orrelation 
oe�
ient ρs = γs/γ0allows to �nd the shift parameter dependen
e for di�erent forms of non-stationarity.We thus see that auto
orrelations of various measures of volatility 
an arise due to smooth non-stationarity in data, rather than be
ause of the sto
hasti
 nature of volatility. At this point, a naturalquestion 
omes up: does su
h a me
hanism represent the reason why noti
eable auto
orrelations ofvolatility are observed in various �nan
ial markets?7 Auto
orrelation of di�eren
esThe easiest way to eliminate the relatively smooth non-stationarities in a time series is to swit
h to thedi�eren
es of the data series. If vt undergoes a lo
ally 
onstant drift, auto
orrelations for this pro
essare present. If one 
onsiders the di�eren
es of two 
onse
utive data points, the drift is e�e
tively
an
elled. Even if the trend in vt slowly 
hanges its dire
tion, within the as
ending and des
endingparts the values of di�eren
es 
hange only slightly and be
ome lo
ally quasi-stationary.Let us shall 
onsider the 
hange in the modi�ed pri
e range:
δvt = vt − vt−1. (17)Our data sample is represented by daily statisti
s on S&P500 sto
k index for the period of 1990-2008(4791 trading days), and daily data on EURUSD ex
hange rate (1999-2008, 2495 days, ex
ludingholidays). Let us start with obtaining the auto
orrelation 
oe�
ients of the amplitudes of daily pri
erange ρs(v) = cor(vt, vt−s), with result plotted in Fig. 14. As usual, the 
oe�
ients ρs are 
onsiderablyhigh; the auto
orrelations for S&P500 index are more signi�
ant than those for EUR/USD ex
hangerate, and manifest weaker �u
tuations.Let us now 
onsider the di�eren
es the pri
e range of two 
onse
utive days; we �nd that for di�er-entiated series, the auto
orrelation ρs(δv) drops sharply, as 
an be seen from Fig. 15. The dissimilaritybetween these two behaviors is striking. The se
ond auto
orrelation 
oe�
ient for S&P500 index isredu
ed by fa
tor of 24, from the value of 0.618 to 0.026. For the EUR/USD rate the de
line is17-fold � from 0.449 to 0.027. Dotted lines in all �gures indi
ate the double standard error, equalto 0.03 = 2/

√
4791 for S&P500 index and 0.04 = 2/

√
2495 for EUR/USD. The disappearan
e of
orrelation 
an be manifestly demonstrated by means of the s
atter plots of 
onse
utive values of vtand v(ts). 12
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10 20 30 40 500Figure 15: S&P500 and EURUSD 
orrelograms after for di�erentiated pri
e rangeThe two diagrams plotted in Fig. 16 
learly show the presen
e of 
orrelations between {vt, vt−1}of S&P500 index, and their absen
e for {δvt, δvt−2}. In the left 
hart dots �ll the area with a
hara
teristi
 
omet-like shape, while in the right one they form a symmetri
al 
loud of zero 
orrelation.The similar results, with auto
orrelation 
oe�
ients being equal to zero, are also obtained for absolutelogarithmi
 returns |rt|, as well as for other �nan
ial instruments.
   t-1

   t

   t-2
0 5

5

5-5

-5

5

0

   t

Figure 16: First auro
orrelation for S&P500 before and after swit
h to di�eren
esWe note, however, that for the di�eren
es δvt a high negative auto
orrelation appears for a shiftof one day, ρ1(δv) = cor(δvt, δvt−1). In the above example it is equal to -0.49 for S&P500 index and-0.53 for EUR/USD. However, its origin is not due to the sto
hasti
 dynami
s of volatility, but rather
aused by the overlapping e�e
t. We now elu
idate it by way of example. Let us assume that thefollowing simple model governs the pri
e pro
ess:
vt = σ · θt, (18)where σ = const, and θt are stationary independent positive random variable that arises be
ause ofthe errors 
aused by the �niteness of the sample that is used for volatility measurement. In this 
ase,the di�eren
es δvt = σ · (θt −θt−1) have zero mean δvt = 0. The �rst auto
orrelation 
oe�
ient equalsto

〈δvt · δvt−1〉 = σ2 〈(θt − θt−1) · (θt−1 − θt−2)〉 = −σ2 ·
[

θ2 − θ
2

]

= −σ2 · σ2
θ , (19)13



where σ2
θ is the varian
e of θ. The mean of square arises in the term −〈θt−1 · θt−1〉 = θ2, whi
h is theone responsible for the e�e
t of overlap. In the same way, the varian
e of di�eren
e 〈

δv2
t

〉

= 2σ2σ2
θis obtained. Thus, �rst auto
orrelation 
oe�
ient is exa
tly equal to ρ1(δv) = −0.5, as we have seenabove. Correlations with shifts of s > 1 will be equal to zero, be
ause there is no overlap in this 
ase.The fa
t that for the auto
orrelations of di�eren
es the relations ρ1(δv) = −0.5 and ρs(δv) = 0(s > 1) hold with a good degree of a

ura
y 
orroborates the model (18). However, if the parameter σwere a 
onstant, there would be no 
orrelation between 
onse
utive values of volatility ρs(v) = 0 (dueto the independen
e of θt). The 
orrelation may o

ur, as we have shown above, as a 
onsequen
e ofgradual 
hange in σ over time. Therefore, a
tually σ = σ(t) is a smooth fun
tion of time.Both for the 
on
lusive 
lari�
ation of the situation with ρ1(δv), and for the purposes of furtherresear
h, we need a method for extra
ting of the smooth non-stationary 
omponent of volatility.8 Filtering smooth non-stationarityFor the extra
tion of slowly varying 
omponent in the pro
ess xk = x(tk) we will use the Hodrik-Pres
ott �lter [38℄ (referred to as HP-�lter below). The smooth 
omponent sk of the series 
an befound by way of minimizing the squares of its deviations from empiri
al data xk, along with therequirement of 
urvature minimality for sk:

n
∑

k=1

(xk − sk)2 + λ ·
n−1
∑

k=2

(∇2sk)2 = min, (20)where the se
ond di�eren
e is given by ∇2sk = (sk+1 − sk)− (sk − sk−1). The higher λ parameter is,the more smooth shape sk one re
eives as the result. The value of λ 
an vary in a very wide range,so it is 
onvenient to use it's de
imal logarithm ν instead, so that λ = 10ν.When one deals with heavily noisy data, there is always 
ertain freedom in the 
hoi
e of λ param-eter. If λ is small, there is a danger of dete
ting bogus non-stationarity where it does not exist. Withlittle smoothing, sk 
omponent will follow any lo
al �u
tuations, whi
h do not have any relation tonon-stationarity. On the other hand, with strong smoothing we risk missing important details of thepro
ess dynami
s that is the fo
us of our interest.Therefore, we need a 
ertain statisti
al 
riteria of the degree of smoothing in order to redu
e thepossible arbitrariness. As usual, we will use the random walk as the yardsti
k.The mean value of logarithmi
 returns is equal to the relative 
hange in pri
e within the time lag
rt = lnCt/Ot. We measure the volatility basing on a smoothed mean of modi�ed range within a lag
σ(t) = (a − |r|/2) ·

√
2π/3. Here, when using the term 'volatility', we always assume volatility of a lag(whether it is minute, hour, day, et
.).If the number of dis
rete pri
e ti
ks within a lag is su�
iently large, then regardless of the intra-lagdistribution, logarithmi
 returns rt will be un
orrelated Gaussian random numbers. Let us smooththeir mean value r̄(t) using the HP-�lter with di�erent parameters λ and 
al
ulate the typi
al valueof Err

[

r̄(t)
] for �u
tuations r̄(t) around the average (̄r) for all empiri
al data:

Err
[

r̄(t)
]

=
√

〈(r̄(t) − r̄)2〉. (21)Similarly, we determine the error of 
al
ulation of smoothed volatility of a lag. Our numeri
al simu-lations show that these errors, with a good degree of a

ura
y, de
rease as the λ parameter grows, asfollows:
Err

[

r̄(t)
]

≈ 0.50 σ

λ1/8
, Err

[

σ(t)
]

≈ 0.15 σ

λ1/8
, (22)and manifest no noti
eable dependen
y on the number of empiri
al points n. Moreover, the errors donot depend on the type of distribution (for a dis
rete model of random walk). The rather small powerexponent of 1/8 
lari�es the reason why one needs to vary λ parameter over a wide range of values.The expressions (22) de�ne a typi
al 
orridor of os
illations for the smoothed variables r̄(t) and

σ(t), whi
h are �u
tuations and are not statisti
ally signi�
ant for 
onstant volatility. Therefore,we use them as 
riteria of statisti
al signi�
an
e, at least for the se
tions of data where σ(t) isapproximately 
onstant. 14



Let us 
onsider a typi
al example of a numeri
al simulation (σ = 1, n = 1000) for the three valuesof λ (ν = log10 λ). The boldest line in Fig. 17 
orresponds to λ = 1000000 (ν = 6), and the thinner oneto λ = 1000 (ν = 3). The solid horizontal 'signi�
an
e levels' de�ne the double error band ±2Err[r̄(t)]in 
ase of ν = 6, and similar dotted lines, for ν = 3 and ν = 9. In 
ontrast to signi�
an
e levels of
orrelation 
oe�
ients, we have a smooth variable r̄(t), whi
h may for some time dwell outside theband de�ned by the statisti
al error. Nevertheless, the relations (22) indeed 
hara
terize the behaviorof typi
al �u
tuations of a smoothed variable for random data.
Figure 17: Smoothed mean of Gaussian noiseHowever, in the non-stationary situation, whi
h is a matter of our main interest, we should keepthe smoothing fa
tor on the balan
e. For example, if we model the pro
ess σ(t) = 1+0.5 · sin(2πt/T ),where T is the total duration of the simulated data series, we get the following behaviors of volatilitysmoothing (where volatility is measured by way of modi�ed pri
e range).

Figure 18: Smoothed volatility of random walk with σ(t) = 1 + 0.5 · sin(2πt/T )One 
an see from Fig. 18 that in this 
ase the optimal value is ν = 6, as ν = 3 follows too 
loselythe noisy �u
tuations around the true volatility, while ν = 9 simply does not '
at
h' the periodi
nature of σ(t). However, the situation deteriorates dramati
ally, if volatility su�ers a sho
k jump.Thus, let us 
onsider the pro
ess, where for half of n = 1000 'trading days' the volatility is σ = 1%,and for the se
ond half σ = 2%. For this model, HP-smoothing with di�erent λ gives the resultsplotted in Fig. 19.
Figure 19: Smoothed volatility of pro
ess with step-
onstant σ(t)We see that in this 
ase the 
hoi
e of ν = 6 blurs the step signi�
antly. On the other hand,smoothing with ν = 3 approximates the jump in volatility mu
h better, but produ
es noisy andspurious �u
tuations for 
onstant σ. 15



9 Auto
orrelation of normalized volatilityLet us now use the HP-�lter to separate the smooth non-stationary part of volatility and �lter it outfrom the data. We will fo
us on the higher-frequen
y 
omponent of volatility that remain after su
h�lter is applied, as well as on the 
orresponding auto
orrelation 
oe�
ients.Let us 
onsider the daily modi�ed pri
e range vt = at − |rt|/2 for EUR/USD ex
hange rate for theperiod from 1999 to 2008. Using this empiri
al data, we now estimate daily volatility σt = vt

√
2π/3and plot it in Fig. 20.
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1999 2000 2001 2002 2003 2004 2005 2006 2007 2008Figure 20: Volatility of EUR/USD measured by pri
e rangeWe extra
t the non-stationarity from the pri
e pro
ess using HP-�lter. The bold line at the 
hartbelow represents the volatility smoothed with λ = 1000000 (ν = 6). The double error band, a

ordingwith the equation (22), for the value of volatility of 0.5 (the average for years 2004-2007), will havethe width of ±0.026. In fa
t, it is only slightly wider than the width of the line. Therefore, the 
urvesin the graph of non-stationary volatility σ(t) for ν = 6 
an be regarded as statisti
ally signi�
ant (seeFig. 21)
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1.0

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008Figure 21: Smoothing the volatility with HP-�lterThe pi
ture 
hanges when smoothing is performed with ν = 5 parameter. Let us take the graphfor σ(t) smoothed with ν = 6, and plot the double error band (1 ± 0.036) · σ(t) around it (markedby dotted lines), whi
h 
orresponds to the signi�
an
e levels for ν = 5. As 
an be observed from the
hart, the ν = 5 smoothed volatility (thin line) is more 
urvy than the one for ν = 6; however, allthe bends of the graph lie within the double-error 
orridor, and thus one 
ould assume they are notstatisti
ally signi�
ant. On the other hand, the ν = 5 smoothed volatility models noti
eably betterthe behavior of the empiri
al data around the sho
k point in fall of 2008.As 
an be seen from the previous se
tion, the HP-�lter keeps the 
urvature of the whole 
urve aslow and as 
onstant, as possible. Therefore, it gives good results for relatively quiet intervals, whileprodu
ing larger distortion when the pro
ess goes through abrupt 
hanges.Now we pro
eed to eliminate the smooth trend σ(t) from the data. We do this not by subtra
ting16



it, as is 
ommon pra
ti
e in the time series pro
essing, but rather divide by it:
σt →

σt

σ(t)
. (23)The meaning of this pro
edure is 
lear; it ensures that the volatility is normalized for the entire dataseries. As a result of this pro
edure, the volatilities adjust not only their average, equal to 1, but alsotheir varian
e, as 
an be readily seen from Fig. 22. Let us now 
ompare the auto
orrelation 
oe�
ients

   t /  (t) =6 EURUSD
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1999 2000 2001 2002 2003 2004 2005 2006 2007 2008Figure 22: Pri
e ranges after normalizationbefore the normalization pro
edure (23) is applied (Fig. 23, left), and after it is applied (Fig. 23, 
enterand right). As 
an be seen, the normalization redu
es auto
orrelations by nearly 10-fold. The same istrue for the �rst 
orrelation 
oe�
ient, whi
h for the pri
e range di�eren
es is equal to -0.50. Thus,its origin is indeed related to the e�e
t of overlap dis
ussed above.
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Figure 23: Auto
orrelations before and after normalizationWe note that during the normalization pro
edure we divide all daily amplitudes by the smoothedvariable σ(t). However, when we 
al
ulate it, we use a set of values σt at and around the 
urrent time
t. As a result, the neighboring values of σ(t) 
ould appear signi�
antly 
orrelated. This may lead tosmall auto
orrelation present after normalization; nevertheless, the value of ρs(v/v(t)) is very small.Thus, both simple transition to �rst di�eren
es of the data series, and removal of the smooth
omponent of volatility by means of HP-�lter, make 
orrelation 
oe�
ients of the adjusted pro
essstatisti
ally insigni�
ant. This fa
t, 
ombined with the dis
ussed above simple explanation for theorigin of auto
orrelation under non-stationarity, raises doubts about the sto
hasti
 nature of volatility.However, one still needs to explore in more depth the noisy 
omponent of the volatility. We will returnto this issue in the last se
tion of the paper.10 Ba
k to normal distributionAs was already mentioned in the Introdu
tion, there is a large body of resear
h that study the prob-ability distribution of logarithmi
 returns. The fa
t of its being non-Gaussian has be
ome generallya

epted (see, for example [22℄, [39℄). However, when we speak of the density of probability as fun
-tion of single variable P (r), we obviously assume the stationarity of random numbers r, as we do not17



involve time dependen
y. To obtain su�
iently reliable statisti
al results when inferring P (r), one
hooses the widest possible interval 
ontaining a large amount of data points n.However, under non-stationarity su
h approa
h signi�
antly distorts the 'true' type of distribution.If statisti
al parameters depend on time, the density of distribution will not be stationary either P (r, t).Let us assume that the non-stationarity is parametri
 and 
on
entrated only in the volatility σ(t).Suppose also that P (r, t) = P (r, σ(t)) is governed by the Gaussian distribution (rt = σ(t) · εt):
P (r, t) =

1

σ(t)
√

2π
e−

1

2
r2/σ2(t). (24)Se
ond and forth moments are equal to, respe
tively: r2 =

〈

σ2(t)
〉

, r4 = 3
〈

σ4(t)
〉, and in general 
ase,despite the Gaussian distribution, its 'aggregated' kurtosis, estimated without taking into a

ount thenon-stationarity, be
omes di�erent from zero:

ex = 3 ·
[

〈

σ4(t)
〉

〈σ2(t)〉2
− 1

]

. (25)In our toy model of a 20-year walk with sho
k volatility doubling, the kurtosis of data equals to27/25 = 1.08. In a more general 
ase, the non-Gaussian nature may be a�e
ted by other types ofnon-stationarity, for example, the drift of returns: rt = µ(t) + σ(t) · εt.Let us see what happens with the empiri
al data after eliminating of the non-stationarity. In orderto do this we divide all rt by the value of volatility at a given moment of time. We obtain its 
urrentvalue by smoothing daily modi�ed amplitudes of range σt = (at − |rt|/2)
√

2π/3 using the HP-�lter.Thus, we apply the following transformation to initial logarithmi
 returns:
rt → r′t =

rt

σ(t)
. (26)Su
h normalization makes random numbers r′t, modulated by σ(t) fun
tion, stationary.Table 5 
ontains statisti
al parameters of S&P500 index logarithmi
 returns for the period 1990-2008. The total number of trading days is equal to n = 4791, the share of positive returns is 52.8%for all 
ases.Table 5: Statisti
al parameters of S&P500 index logarithmi
 returns for three di�erent degrees ofsmoothness parameter ν

aver sigma asym excess p1

r 0.020 1.137 -0.23 10.18 78.9
ν = 6 0.051 1.199 -0.15 1.19 71.1
ν = 5 0.055 1.187 -0.12 0.82 70.4
ν = 4 0.059 1.177 -0.08 0.51 69.5The �rst line presents the statisti
s before the transformation of normalization (26). The otherlines 
ontain statisti
 parameters after transformation, where smoothing with di�ering parameter

ν = log10 λ is used.Spe
ial attention should be paid to the 
olumns excess and p1. We see that smoothing redu
esdrasti
ally the values of these parameters. This is true even for a su�
iently smooth fun
tion σ(t),
orresponding to ν = 6. In Fig. 24 it is represented by the bold line:The smaller parameter ν is, the more intensive the �e
tions of volatility σ(t) are, be
ause the�u
tuations of returns start a�e
ting the average. Obviously, in this 
ase a de
rease in kurtosistakes pla
e, even for stationary non-Gaussian random pro
ess. To 
ontrol this e�e
t, we perform thefollowing simulation experiment. We randomly mix the initial pairs of daily returns and volatility
{rt, σt} in order to eliminate non-stationarity. After that, we apply smoothing with HP-�lter, andnormalization (26) both to initial data (original), and to mixed ones (mixed). The 
harts in Fig. 25present the dependen
e of the kurtosis (left) and the probability of the fa
t that returns fall within onesigma p1 (right) as fun
tions of the smoothing parameter ν = log10 λ. It 
an be easily noti
ed that tothe right of ν ∼ 6 the kurtosis and probability p1 for mixed data de
rease insigni�
antly. At the sametime, statisti
al parameters 
hara
terizing the non-Gaussian property of initial data de
rease rapidly.18
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Figure 25: Kurtosis ex and probability p1 for di�erent ν, 1990-2008Thus, as the 
riterion for the optimal meaning of ν, one may 
hoose the point where the di�eren
ebetween the statisti
s of mixed and initial data rea
hes its maximum.Another argument for importan
e of non-stationarity 
ontribution into the non-Gaussian propertyof distribution is the break out of 2008 �nan
ial 
risis. As 
an be seen from Table 5, the kurtosis overthe period 1990-2008 is equal to ex = 10.2. However, it is enough to eliminate just one volatile yearof 2008, in order to make the kurtosis de
rease threefold to ex = 3.8. The number of trading days forthis 
al
ulation is redu
ed in this 
ase by only 5% to n =4528.
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originalFigure 26: Kurtosis ex and probability p1 for di�erent ν, S&P500, 1990-2007The 
harts in Fig. 26 depi
t the dependen
y of kurtosis and probability p1 on the smoothingparameter ν for mixed and initial data of S&P500 index daily returns for the period 1990-2007. One
an noti
e that, although the initial value of kurtosis is relatively small, it nevertheless de
reasesstatisti
ally signi�
antly as a result of elimination of non-stationarity from the data. For normalizeddata, the value of kurtosis ex = 1 
an be 
onsidered as signi�
ant, whi
h is four times smaller thanfor initial data.Let us plot (see Fig. 27) the histograms of probability density distribution and a graph of normalprobability (in a way similar to [23℄), formally based on the initial non-stationary data, as well as thesame quantities after the normalization pro
edure (26) is applied to the data (Fig. 28).19
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Figure 28: Distribution of S&P500 returns for 1990-2008 after normalizationThe unmarked line in the 
harts 
orresponds to the Gaussian distribution. A graph of normalprobability represents dependen
y y = f(r) of relation FN(y) = F (r), where FN(y) is an integralnormal distribution, and F (r) is empiri
al integral distribution for returns. If the empiri
al distributionof F (r) is Gaussian, this graph should be a straight line. We see that after normalization the densityof probability be
omes mu
h more 
lose to normal. Deviations from the straight line are parti
ularlyevident for the ex
essively large negative returns be
ause of the rare negative sho
k impa
ts to themarket.Let us 
onsider, for 
omparison, the probability distribution of 
urren
y market daily returnsusing the EUR/USD rate for the period 1999-2008 as sample. Basi
 statisti
al parameters beforenormalization (�rst line) and after smoothing with di�erent parameters ν are given in Table 6. Wesee that the initial data has relatively small kurtosis, but after smoothing it de
reases even further.The mean value of volatility after normalization is 
lose to one. This 
on�rms that σ = v
√

2π/3 is agood unbiased estimation of the daily volatility of rate returns.Table 6: Statisti
al parameters of EURUSD rate logarithmi
 returns for three di�erent degrees ofsmoothness parameter ν
aver sigma asym excess p1

r 0.008 0.652 0.05 1.3 72.7
ν = 10 0.017 1.022 0.03 0.8 71.5
ν = 6 0.022 0.995 0.00 0.1 69.3
ν = 4 0.022 0.993 0.01 0.1 69.0Testing statisti
al signi�
an
e of the de
rease in kurtosis and the probability p1 shows pra
ti
allyzero kurtosis of normalized returns (Fig. 29). The 
orresponding histogram and normal probabilitygraph are plotted in Fig. 30. As a result we re
eive a virtually 
anoni
al normal distribution withdeviations that are rather typi
al for a relatively small sample (n = 2495).We shall not 
ondu
t a more detailed statisti
al analysis of distribution form, limiting the argumen-tation to these illustrative examples. We infer (see Con
lusion) that the observed data is 
omposedof the mixture of normally distributed �u
tuations of the market, modulated with non-stationaryvolatility, and rare sho
k impa
ts. Therefore, even after the elimination of non-stationarity there mayremain sho
k outliers, whi
h make the total distribution weakly non-Gaussian.20
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Figure 30: Distribution of returns EURUSD, 1999-2008, after normalization11 Quasi-stationarity of volatilityVanishing auto
orrelation 
oe�
ients between 
onse
utive values of volatility, generally speaking, donot ex
lude the possibility of its sto
hasti
 des
ription. In parti
ular, we 
an write down the followingsimple dis
rete pro
ess:
rt = σt · νt, σt = σ · (1 + β · µt), (27)where νi and µi are independent random variables, while σ, β are 
onstants. However, within thismodel the interpretation of volatility σt as a random variable be
omes rather super�uous. In fa
t, we
ome ba
k to the usual stationary model rt = σεt, where εt = νt + β · µtνt. In parti
ular, if νi and

µi are normally distributed, the distribution for εi would no more be normal with kurtosis equal to
6β2(2+β2)/(1+β2)2. Nevertheless, the question of lo
al stationarity of 'true' volatility remains open.Let us 
ondu
t several statisti
al estimations. First, we 
onsider a modi�ed amplitude of range.The spread of its values under 
onstant volatility σ o

urs due to �nite width of distribution density
P (v). One 
an obtain its analyti
al form from the equation (A5) of Appendix A, and present it asthe following in�nite series:

P (v) = (32v4 − 9)N(2v) +

∞
∑

k=2

{

4(2k − 1)2

k2(k − 1)2
N1 −

8k2
(

1 + k2 − 4(k4 − k2)v2
)

(k2 − 1)2
N2

}

,where N1 = N(2(2k − 1)v), N2 = N(2kv) are non-normalized Gaussian fun
tions (see Appendix A).Below we list the integral probabilities of the fa
t that variable σ = v
√

2π/3 falls within the interval
[0..σ0] (the �rst line 
ontains values of σ0, the se
ond, 
orresponding probabilities measured in per
entpoints): 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.60.6 3.3 10.4 22.5 37.8 53.7 68.1 79.5 87.7 93.1 96.4 98.2The modi�ed pri
e range v

√
2π/3 should remain within the interval [0 .. 1.5] about 96.4% of days; itvery rarely drops below 0.5.If we eliminate (26) by smoothing pro
edure with ν = 4 the non-stationarity in daily modi�edranges for EURUSD in 2007-2008 years, the residual series has dynami
s as shown in Fig. 31.21
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2007 2008Figure 31: Stationary pri
e range of EURUSD in 2007-2008In 
ase of Brownian random walk, dotted lines 
orrespond to the probability 96% of staying withinthe interval 0.5 < v
√

2π/3 < 1.5. We see that, ex
ept for rather rare outliers, most of daily volatilitiesestimated by modi�ed amplitude of probability, fell into the dotted 
orridor. The number of outliersis slightly higher than expe
ted 4% (as there is 250 trading days in a year, 250*4%=10). This smallex
ess of extremal values may be interpreted (espe
ially in 2008, a 
risis year) as o

asional sho
kimpa
ts to the market, not related to its 'typi
al' intrinsi
 dynami
s.As we have dis
ussed above, the 'daily' volatility 
an be estimated not only by means of modi�edamplitudes of range, but also by 
al
ulating its value on the base on intraday lags, i.e. 15-minute ti
ks.In Fig. 32, the dynami
s of volatility is presented, after the elimination of non-stationarity, obtainedby the latter method for the period of 2007-2008 for EUR/USD ex
hange rate. In this 
ase the spread
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Figure 32: Intraday volatility of EURUSD in 2007-2008of values is related to the �niteness of the sample that is used for volatility 
al
ulations. In order todetermine the signi�
an
e level, one has to know the 
orresponding distribution of probability. As weknow, the error of stationary volatility 
al
ulation is determined by fourth moments and, in 
ase oflarge kurtosis, it will be quite large.The intraday 15-minute data distribution has signi�
ant kurtosis. Straightforward 
omputationof kurtosis for EURUSD during 2004-2008 yields the value of 20, whi
h is due to the long-term non-stationarity, the substantial 
y
li
 e�e
ts in intraday a
tivity, as well as several other spe
i�
 reasons(see [30℄, [32℄ for a detailed dis
ussion), into whi
h we will not delve here.In order to obtain the signi�
an
e levels, we will 
ondu
t the following simple experiment withthe data. Let us 
al
ulate the logarithmi
 return basing on 15-minute lags of EUR/USD rate. Then,to preserve the intraday periodi
ity, we shall mix data points with the same intraday time. In otherwords, we randomly shu�e all lags at 00:00, then apart from them we mix lags of 00:15, et
. Forthese syntheti
 data, that are free of any memory e�e
ts ex
ept the intraday 
y
les, we 
al
ulate themeaning of intraday volatility. Then we normalize the series so that the mean is equal to 1, andplot the 
orresponding distribution of probability. It turns out that about 96% of data stays withinthe 1 ± 0.4 
orridor. It is these levels, whi
h 
hara
terize the 'typi
al' range of volatility due to the�niteness of data, that are marked at the above 
hart with dashed lines. We see that the data �tsinto the 
orridor quite well.We stress that the 
omputations performed above are rather a qualitative estimation than a stri
tstatisti
al analysis; su
h analysis might not be appropriate at all without 
onstru
ting a 
omplete22



model of non-stationarity of data at di�erent time s
ales. However, an assumption about the lo
al
onstan
y of volatility of daily lag returns appears rather plausible. In other words, the daily volatilityof the market most probably is des
ribed by a smooth, rather slowly varying fun
tion of time. At anymoment, its value 
an be 
onsidered lo
ally 
onstant, and it determines the sto
hasti
 dynami
s ofpri
e returns for a �nan
ial instrument.12 Con
lusionLet us reiterate the main inferen
e that we argued for in this paper:Volatility and other statisti
al parameters should be regarded as gradually 
hanging fun
-tions of time. They determine lo
ally quasi-stationary sto
hasti
 dynami
s of pri
es for �-nan
ial instruments. There are rare and irregular sho
k impa
ts that in�uen
e the markets,resulting in shifts in daily returns, and as they a

umulate, a�e
t the value of long-termvolatility.The situation resembles the deformation of a plasti
 material after a series of impa
ts, and thegradual restoration of form after external in�uen
e is terminated. The study of properties of su
hresilien
e of volatility are of great importan
e, espe
ially for fore
asting the time of its reversal to thelong-term typi
al levels.Therefore, the sto
hasti
 nature of markets is determined by the following two 
omponents: 1)intrinsi
ally Gaussian-distributed daily returns with slowly 
hanging volatility; and 2) rarely o

urringsho
k impa
ts. These sho
ks are assumed to be essentially unpredi
table, but their impa
t on thevolatility as well as its subsequent evolution should be the subje
t of resear
h.A
tually, sho
ks are quite in
onspi
uous; in reality it is quite di�
ult to separate the 'unnatural'behavior of the market as a result of sho
ks from 'normal' volatility. Finan
ial analysts and e
onomi

ommentators never fail to �nd the pie
e of news to a

ount for all pri
e spikes and 
rashes. On theother hand, su
h events as Lehman's bankrupt
y 
an hardly be 
onsidered everyday news.Volatility 
an also gradually in
rease as a result of relatively insigni�
ant negative news ba
k-ground, provided that su
h ba
kground lasts for long enough. Thus, a gradual in
rease in volatilitysin
e the beginning of 2007 was a result of pre
isely su
h 'soft' pressure on the markets from the realestate se
tor. Sin
e the autumn of 2008, this growth has been explosive and unpre
edented for themodern history of �nan
ial markets. As we know, it originated from �nan
ial se
tor, and triggered anavalan
he-like e�e
t of 
on�den
e 
risis and widespread pani
. All this, eventually, delivered a blowto the real se
tor of e
onomy.Finally, an in
rease in volatility usually a

ompanies 'unmotivated' booms in the market, whena �nan
ial bubble starts to in�ate. High volatility also persists in the period of its 
ollapse. Whenmarket goes into a 'quiet' phase of growth, volatility usually slowly de
reases.Peaks typi
ally observed in the 
harts of non-stationary volatility bring up the analogy with res-onan
e phenomena in physi
s. Su
h 
onne
tion implies the existen
e of 
ertain equations des
ribingthe system dynami
s. There is no doubt that a relaxation me
hanism exists, ensuring that a de
ay ofsystem ex
itations happens after a 
ertain period, determined by the life time of the resonan
e.When one speaks about a gradual 
ourse of 
hange in volatility, one should keep in mind that itrefers to the 'typi
al' long-termmarket situations. Sometimes, however, jump-like 
hanges in statisti
alparameters o

ur, whi
h determine the sto
hasti
 dynami
s of the pri
e pro
ess. It seems plausiblethat su
h a qualitative shift in market behavior happened in September 2008. In 
ontrast, the exitfrom this instability, and return to equilibrium, is likely to be quite gradual and prolonged.We infer that the non-Gaussian nature of markets stems from two origins. First, it is the artifa
t ofun
riti
al postulation of stationarity under 
onditions when it doesn't really exist. This 
omponent 
anbe removed, at least in theory. After the data is transformed into a stationary form, the non-Gaussianfeatures redu
e signi�
antly. However, the rare sho
k impa
ts, whi
h are the se
ond origin, even when
ombined with stationary Gaussian returns, still render the distribution weakly non-Gaussian. Thisis parti
ularly evident in the 
ase of sto
k market, whi
h has the after-hours periods when negativeor positive news a

umulate. When the markets open, a possibility appears of a 'single emission' ofa

umulated emotions. Around-the-
lo
k foreign ex
hange markets 
an respond to the developmentof su
h sho
ks in more 'subdued' way. 23



Auto
orrelation 
oe�
ients in various volatility measures also arise due to the non-stationarity ofthe data and disappear after it is eliminated. In this sense, they are indeed the eviden
e of long-term memory, but do not have anything to do with the short-term sto
hasti
 properties of volatility,whi
h are assumed in 
orresponding autoregressive models. Therefore, further resear
h should fo
uson fore
asting the smooth dynami
s of volatility, rather the sto
hasti
 theories of volatility behavior.A
knowledgementI am grateful to Alexander Zaslavsky, Igor Chavy
halov, Andrej Tish
henko, Oleg Orlyansky, LeonidSavt
henko, Alexander Ferludin and Anna Gorbatova for many useful 
omments. Any remainingerrors are my own.
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Appendix A Brownian walkIn this appendix we provide the basi
 expressions for Brownian motion des
ribed by the sto
hasti
equation dx = µdt + σδW . Let us �rst 
onsider the 
ase of driftless pro
ess (µ = 0). Without anyloss of generality, we may assume that at the initial moment of time x(0) = 0. The maximal andminimal values of x for the period 0 6 t 6 T are equal to H and L, respe
tively, and r = x(T ). Theheight h = H of as
ent and the depth l = −L of des
ent are always positive, and −l 6 r 6 h. Theamplitude of range is equal to a = h + l. Below we 
onsider the 
ase of unit volatility σ = 1 and unittime interval T = 1. To restore the original notation, it is ne
essary to substitute r → r/σ
√

T for thedimensionfull variables r, h, l, a. The same should be done in the di�erentials dr, et
. in the integrals
ontaining the probability densities. In order to make the formulae more 
on
ise, we use this notationfor the normal distribution fun
tion: N(x) = e−x2/2/
√

2π.
• We start with the relation for probability that x does not rise above h and does not fall below

−l, when the 
losing return is r:
p(−l < L, H < h, r) =

∞
∑

k=−∞

{

N
(

r + 2ka
)

− N
(

r + 2l + 2ka
)}

. (A1)This formula was �rst re
eived by [40℄. We also note an ex
lusively useful referen
e book by [41℄.Distributions for other variables are derived from the probability (A1). For the return, height anddepth we have:
P (r) = N(r), P (h) = 2N(h), P (l) = 2N(l). (A2)The density of probability for the range a is expressed in the form of an in�nite series over Gaussianbasis:

P (a) = 8
∞
∑

k=1

(−1)k+1 · k2 ·N(ka). (A3)This series 
onverges rather qui
kly for all a 6= 0. A 
hara
teristi
 property of Feller's distribution
P (a) is an extremely rapid de
line in the density of probability for large values of a. Here is a sampleof values of integral probabilities F (a) = p(H − L < a):

a 0.750 1.000 1.500 2.000 2.500 3.000 3.500 4.000
F (a) 0.002 0.063 0.487 0.819 0.950 0.989 0.998 1.000The a parameter is smaller than 0.75 (σ = 1) only in 2 
ases out of 1000. The mean value is ā = 1.5958,the varian
e is σa = 0.29798 · ā. The one sigma interval (ā ± σa = [1.120 .. 2.071℄) 
ontains 71.6%of all a values, while the double sigma interval (ā ± 2σa = [0.645 .. 2.547℄) 
ontains 95.6%; and datapoints outside of the latter interval should, in reality, o

ur only for a above the mean.The joint densities of probability for height (r 6 h), depth (−l 6 r) and range (|r| 6 a) have thefollowing form:
P (h, r) = 2(2h − r) ·N(2h − r), P (l, r) = 2(2l + r) · N(2l + r). (A4)

P (a, r) = 4

∞
∑

k=−∞

k ·
{

−|r| − k(2k + 3)a + k ·
(

a − |r|
)(

2ka + |r|
)2

}

·N
(

|r| + 2ka
)

. (A5)Note also that P (a,−r) = P (a, r), and P (a, |r|) = 2P (a, r).
• Let us provide a table of mean values for di�erent variables (where v = a − |r|/2):

r = 0, r2 = 1, r3 = 0, r4 = 3,

h̄ =

√

2

π
, h2 = 1, h3 =

√

8

π
, h4 = 3,

a =

√

8

π
, a2 = 4 ln 2, a3 =

(2π)3/2

3
, a4 = 9 · ζ[3],

v =
3√
2π

, v2 = 4 ln 2 − 5

4
, v3 =

21 + π2

6
√

2π
, v4 = 6 ln 2 − 27

16
+

3

8
· ζ[3],25



where ζ[n] =
∑

∞

k=1 k−n is a Rieman ζ-fun
tion. The mean values for l and |r| are the same as for h.The means of 
ertain 
ross-produ
ts are given below:
h r =

1

2
, h r2 =

4

3

√

2

π
, h r3 =

3

2
, h r4 =

24

5

√

2

π
,

l rn = (−1)n · h rn, a r2n+1 = 0, a r2n = 2 · h r2n, a |r| =
3

2
.Expressions for other mean values, as well as their generating fun
tion, 
an be found in [25℄.For a pro
ess with a non-zero drift dx = µdt + σδW , we shall use the above-determined driftlessdensities. In order to restore time T and varian
e σ, we should additionally substitute the shift asfollows: µ → µT/σ

√
T . The density of probability for returns is equal to:

Pµ(r) = N
(

r − µ
)

= eµr−µ2/2 P (r).Expressions for joint probability densities [41℄:
Pµ(h, r) = eµr−µ2/2 P (h, r), Pµ(l, r) = eµr−µ2/2 P (l, r),

Pµ(a, r) = eµr−µ2/2 P (a, r), Pµ(h, l, r) = eµr−µ2/2 P (h, l, r).Thus, the densities 
orresponding to µ = 0 are always multiplied by a fa
tor eµr−µ2/2. In the presen
eof drift we obtain:
r = µ, r2 = 1 + µ2, r3 = 3µ + µ3, r4 = 3 + 6µ2 + µ4.Exa
t expressions for mean values of other variables are rather 
umbersome. However, as for �nan
ialdata the 
ondition µ ≪ σ = 1 holds, it is a

eptable to de
ompose a fa
tor eµr−µ2/2 into a series andto use means for the 
ase µ = 0. As a result we re
eive:

h =

√

2

π
+

µ

2
+

µ2

3
√

2π
− µ4

60
√

2π
+ .., |r| =

√

2

π
+

µ2

√
2π

− µ4

12
√

2π
+ .., (A6)

l =

√

2

π
− µ

2
+

µ2

3
√

2π
− µ4

60
√

2π
+ .., a =

√

8

π
+

2µ2

3
√

2π
− µ4

30
√

2π
+ ... (A7)The mean values of height and depth are linear in µ, and only even powers of µ are present in the tailof expansion. The means of lag range and absolute returns 
ontain only even powers of µ. Note alsothe following simple relations, available in 
losed form:

h − l = r = µ, h2 + l2 = 2 + µ2, h r = h2 − 1/2, l r = 1/2 − l2.Appendix B Measures of volatilityThe width of probability distribution of a positive random variable z > 0 
an be 
hara
terized with arelative error σz/z̄, where σz as usual denotes the standard deviation σ2
z = (z − z̄)2.Note that the relative width of distributions for z and z2 are di�erent, and thus a
tually thereare di�erent 
riteria for optimality of volatility measurement. For example, in order to 
al
ulate thestationary volatility one usually uses averaging of either squared returns, or the squares of the lagranges [24℄:

σ2
R =

1

n − 1

n
∑

t=1

(rt − r̄)2, σ2
P =

1

n

n
∑

t=1

a2
t

4 ln 2
. (B8)As in this paper we examine the non-stationary nature of volatility and use the non-linear HP-�lterfor smoothing, it is more 
onvenient to average volatilities σ proper, rather than their squares; thelatter, as we will see below, yield a biased value of σ for small n. Nevertheless, 
onsidering the variousmeasures of volatility, we will 
al
ulate the relative width of both the value its square.26



Let us re
ite some well-known volatility estimators. We shall use a Parkinson measure (1980) [24℄as a base; it is equal to the amplitude of range vP = a. Garman and Klass (1980) [25℄, working in the
lass of analyti
 fun
tions of h, l, r, proposed the following optimal 
ombination, whi
h is a bettermeasure than that of Parkinson:
v2

GK = 0.511 · a2 − 0.019
(

r · (h − l) + 2h · l
)

− 0.383 · r2. (B9)A simpler and drift-independent µ measure is suggested by Rogers and Sat
hell (1991) [26℄:
v2

RS = h · (h − r) + l · (l + r). (B10)Let us show that the simplest linear modi�
ation of Parkinson's measure
vβ = a − β · |r| (B11)where β > 0 is a 
onstant, leads to a narrower distribution than the amplitude of range. If we userelative volatility σv as a 
riterion of narrowness, it is not di�
ult to �nd the optimal value of the
oe�
ient β using the means from the Appendix A:

(a − β · |r|)2
(

ā − β · |r|
)2 = min => β = 6 − 8 ln 2 ≈ 0.455. (B12)However, σv/v̄ is not the only 
riterion, and due to the low sensitivity of the relative volatility to
hange in β, we use in this paper the value β = 1/2 and notation v = a − |r|/2. In what follows wedenote vβ = a − 0.455 · |r|.We note that there is another simple measure of volatility, 
omparable in its e�e
tiveness to (B11),namely:

vF =
a

1 + r2/a2
. (B13)Although the probability of zero value a for �nite duration of a lag T is vanishingly small, it is stillne
essary to de�ne the 
orresponding value vF = 0 for a = 0. A
tually, the relations (B11) and (B13)are not analyti
 fun
tions on a and r, and thus are not governed by the lemma from Appendix B of[25℄.

• In addition to the width of distribution, sometimes absent or weak dependen
e on the drift µare used as a 
riterion. Note that for daily, or shorter, lags µ ≪ σ; therefore, this 
riterion is not thatsigni�
ant. The above proposed measure of the modi�ed lag range, as well as the pri
e range itself,depends on µ. However, this dependen
e is signi�
antly weaker for v than for the amplitude a. If weuse the presentations (A6), (A7), we 
an write the following expression for vβ :
vβ = (2 − β) ·

√

2

π
+

(2 − 3β)µ2

3
√

2π
− (2 − 5β)µ4

60
√

2π
+ ... (B14)It 
an be seen that the fa
tor beside µ2 for β = 1/2 is four times smaller than for β = 0 (vP = a).Consequently, the dependen
e on µ is four times weaker as well. When β = 2/3 (denoted v2/3 below)the 
oe�
ient at µ2 be
omes equal to zero, and the dependen
e on µ is weakening still, although itdisappears 
ompletely only for the measure by Rogers and Sat
hell.

• Let us now 
ompare the statisti
al parameters of di�erent volatility measures shown in Table 7.Table 7: Statisti
al parameters of di�erent volatility estimators, derived analyti
ally (upright) andnumeri
ally (itali
)Measure v̄ v2 σv as ex p1 σv/v̄ σv2/v2

vP 1.596 2.773 0.476 0.97 1.24 70.6 0.298 0.638
vRS 0.960 0.998 0.275 0.46 0.42 69.5 0.287 0.576
v2/3 1.064 1.217 0.292 0.52 0.29 68.4 0.275 0.557
vGK 0.968 0.998 0.245 0.60 0.39 68.6 0.253 0.519
vF 1.254 1.673 0.316 0.53 0.28 68.4 0.252 0.513
v 1.197 1.523 0.300 0.53 0.26 68.2 0.251 0.511
vβ 1.233 1.615 0.308 0.55 0.29 68.3 0.250 0.51027



We use itali
 font to mark the values obtained by Monte Carlo simulation for 3.5 million lags, ea
hbeing a random walk of 1 million ti
ks. In this 
ase, for means and volatility an error of order of
±0.002 is possible in the last signi�
ant digit. The other values (in upright font) are derived throughanalyti
al 
al
ulations.

Figure 33: Mean values of volatility fordi�erent sample sizes n for several esti-mators.
• For non-stationary data it is often ne
essary to 
ondu
tthe averaging over a relatively small number of observations

n. In this 
ase, a bias be
omes apparent in quadrati
 mea-sures for volatility σ. Even if one 
al
ulates the 
lassi
alsquared volatility σ2
R by means of the unbiased formula (B8),the value σR will be biased; indeed, when averaging overlarge numbers of samples of size n, we have < σ2

R >= σ2, but
<

√

σ2
R > 6= σ. If we are interested in the value of volatilityitself rather than its square, it is better to use linear ratherthan quadrati
 measures for non-stationary data.To illustrate the e�e
t of drift we provide 
harts of meanvalues of volatility (Fig. 33), obtained by averaging a largenumber of samples of n values ea
h, for standard de�nitionof σR and σRG =

√

v2
RG measure (B9) 
ompared to a linearmeasure of σ = (a − |r|/2)

√
2π/3.Thus, the measure v = a − |r|/2 has a relatively narrow distribution and 
onse
utively results insmaller error in volatility measurement. Simpli
ity is its obvious advantage, as 
ompared with themeasures vRS and vGK . In addition, it is unbiased in 
ase of small sample size, whi
h is signi�
ant inexamining the e�e
ts of non-stationarity.

28
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